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Abstract 

 Branched-chain amino acids (BCAAs: leucine, isoleucine, and valine) are 

essential components of many biochemical and biological processes. There are 

well-established pathways, such as fatty acid synthesis and oxidation, anabolic use 

to synthesize new proteins, and anaplerotic use to generate or sustain metabolic 

intermediate molecules, which we define as “classical” pathways here. Recently, 

new “non-classical” roles for BCAAs have been discovered, most notably for leucine. 

Leucine has been shown to initiate protein synthesis by increasing translational 

protein complex activities and to suppress feeding behaviors in rats; both 

phenomena are at least partially mediated through the mammalian target of 

rapamycin (mTOR) kinase cascade. Our lab previously identified another potential 

non-classical pathway independent of mTOR, acting through the hypoxia inducible 

factor (HIF) transcriptional regulatory protein. Our goal for the first line of research 

for this work was to validate and further elaborate that leucine promotes HIF 

transcriptional activation through its 2-oxoacid derivative, α-ketoisocaproic acid, 

using an in vitro glioma cell line trangenically altered to express a reporter protein for 

HIF-α degradative cycle activity. The 2-oxoacid was found to increase the half-life of 

the HIF-1α component of the HIF-1 heterodimeric complex in normal oxygen 

conditions and induce secretion of a known HIF-1 transcriptional protein target 
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independent of mTOR activation. The effect of 2-oxoacid stimulation of HIF-1 

trnascriptional activation was inhibited by addition of ascorbic acid, a cofactor known 

to increase HIF degradation in normoxic conditions. Our goal for the second line of 

research was to investigate the interaction between classical and non-classical 

BCAA pathways, that is to say the interaction between metabolic and signaling roles 

in an in vitro model of cancer. BCAAs exclusively undergo irreversible 

decarboxylation and oxidation through the branched-chain α-ketoacid 

dehydrogenase complex (BCKDC), a multienzyme complex regulated by reversible 

phosphorylation. By knocking down the kinase, which normally decreases BCKDC 

activity, with a stable shRNA transfection in a glioblastoma cell line, the BCKDC 

exhibited decreased activity and phosphorylation signal compared to wild-type and 

control vector cell lines. We expected knockdown of the kinase would decrease the 

anabolic protein translational pathway to result in a decrease of cancerous 

phenotypes, such as proliferation, invasion, migration, and colony formation, but 

found the opposite. Further investigation indicated compensatory changes to 

glycolytic pathways such as decreased pyruvate dehydrogenase complex (PDC) 

activity and increased lactate production. These characteristics are known to 

increase the cancerous phenotypes investigated, a phenomenon called “The 

Warburg Effect”. These results implicate BCAAs as an underappreciated component 

in cancer biochemistry, but also relate to various other lines of research, such as 

clinical sequelae of a congenital genetic disorder known as maple syrup urine 

disease (MSUD), neurotransmitter homeostasis and disruption in epilepsy, and 

muscle wasting in patients with cancer known as cancer cachexia.
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Background 

Branched-chain amino acids (BCAAs: leucine, isoleucine, and valine) are 

essential components of many biochemical and biological processes. Unlike many 

amino acids, humans are unable to synthesize BCAAs de novo and must obtain 

them through dietary consumption. This fact is important when one realizes the 

many different roles the BCAAs play in human physiology; some well established 

pathways involving BCAAs are fatty acid synthesis and oxidation, anabolic use to 

synthesize new proteins, and anaplerotic use to generate or sustain metabolic 

intermediate molecules. These functions for BCAAs are the oldest and most widely 

known, which we define as “classical” pathways here. Recently, new “non-classical” 

roles for BCAAs have been discovered, most notably for leucine. As stated above, 

BCAAs are utilized, like other amino acids, as building blocks for protein synthesis. 

When there are insufficient amounts of BCAAs available for protein synthesis, 

functional proteins are unable to be synthesized. Until recently it was unclear how 

BCAA limitation effectively terminated protein synthesis. It was discovered that 

leucine acts to initiate the congregation of proteins necessary for protein synthesis, 

collectively referred to as ‘protein translational machinery’ in this work, by interaction 

with multiple signal transduction and regulatory molecules (Kimball and Jefferson 

2006). Along the same line of research, it was discovered that leucine interaction 

with signal transduction molecules occurs in the hypothalamus of rats to increase 

protein translation locally, and also to decrease feeding behaviors (Cota and others 

2006). Both actions were inhibited by blocking one of the signaling molecules, 

1 
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mammalian target of rapamycin (mTOR), downstream of leucine. It becomes evident 

from this prior work that leucine and the other BCAAs are important for both 

biochemical and molecular biological functions. We became interested in both 

aspects of BCAA function (ie, as metabolic and signaling, or signal initiation, 

molecules).  

Rationale and Hypotheses 

 Normal cells grow, perform necessary and regulated functions based on 

expression of an appropriate set of genes, then die. Senescence and apoptosis are 

mechanisms through which the body regulates its own function. However, when 

genetic mutation leads to dysregulation of the cell cycle, the cell can lose its ability to 

self-regulate its growth cycle. These new, abnormal cells outlive normal cells and 

begin to populate tissue or an organ at a higher rate than normals cells, which can 

cause cancer. Half of all men and one third of all women in the US will be diagnosed 

with cancer within their lifetimes. Cancers can begin in many different parts of the 

body, but different types of cancer have varying biochemical and cytological 

characteristics. For example, lung cancer and breast cancer are very different 

diseases. They grow at different rates and respond to different treatments. That's 

why people with cancer need treatment that has shown to be effective for their 

particular type of cancer. While there have been great advances in targeted 

chemotherapy, investigations into basic biochemistry have led to exciting results that 

could have implications for many, if not all, types of cancers. If a novel molecular 

target can be identified that can change the way cells behave on a fundamental, 
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biochemical level, it could bring new insight into the therapeutic strategy against 

cancers. 

 Recently, our lab had identified pyruvate dehygrogenase complex (PDC) as 

one such metabolic enzyme whose activity could predictably and consistently be 

correlated to cancer phenotypes. In this work, we propose the branched-chain α-

ketoacid dehydrogenase complex (BCKDC) as another metabolic enzyme target 

whose substrates and products act as signaling molecules and whose activity can 

be altered to change cancer phenotypes. Our hypotheses were: 

1. α-ketoisocaproic acid, a substrate of the BCKDC and deaminated product of 

leucine, can act to decrease HIF degradation cycle activity thereby promoting 

neoplastic activity in an in vitro model of CNS cancer 

2. cells genetically modified by small hairpin RNA for the BCKDC kinase will 

increase BCKDC activity and indicate a reciprocal relationship between 

BCKDC activity and cellular aggressiveness (eg, proliferation, migration, 

invasion, colony formation) in an in vitro model of CNS cancer. 

Survival: The Essence of Evolution 

 Adaptability is the essence of evolution. Throughout the development of our 

modern cell, the environment has exerted pressure which allowed the emergence of 

advantageous traits. These changes result in progeny that are more adaptable to 

environmental stress. There have been hundreds of survival mechanisms 

discovered in the mammalian cell. Survival mechanisms also entail senescence and 

apoptosis, since an aberrant cell can lead to widespread dysregulation and system 

failure or death. When these mechanisms function normally, a cell is able to 
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withstand a certain threshold of stress greater than the cell would normally allow. 

However, when one of these mechanisms is dysregulated, the effects can be 

severe. Perhaps the most common life-threatening disease caused by mutations to 

genes encoding for regulatory proteins is cancer. Among the causes of cancer are: 

mutations to the so-called “tumor suppressor” genes; to the genes encoding for 

apoptotic pathway proteins; and to the genes encoding for cell cycle regulatory 

proteins. But cancer as an in vitro cellular phenotype and as a clinical disease is 

distinctly different. Much like a square is a rectangle but a rectangle is not a square, 

in vitro cancer is uncontrolled proliferation but this uncontrolled proliferation does not 

necessarily constitute a clinical diagnosis of cancer. Cancer disease is defined by 

Hanahan and Weinberg (2000) as having six hallmarks: self-sufficiency in growth 

signals, insensitivity to growth-inhibitory (antigrowth) signals, evasion of 

programmed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis (Hanahan and Weinberg 2000). 

Recent advances have determined that there are a handful of molecules involved in 

many, if not all, of these phenomena seen in cancer. One such protein is hypoxia 

inducible factor (HIF), an evolutionarily conserved heterodimeric transcription factor. 

Another commonly observed characteristic of cancer cells, that some 

consider the seventh hallmark of cancer, is altered glucose metabolism, which is 

characterized by high levels of lactate in normal oxygen conditions when compared 

to normal tissue. HIF is known to regulate over 100 genes encoding for growth 

factors, metabolic enzymes, and signaling molecules, though its evolutionary roles 
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has been to respond to hypoxic, or low oxygen environments. The survival response 

induces, in particular, a rapid switch to glycolysis and subsequent angiogenesis. 

HIF biology 

 The hypoxic response involves an evolutionarily conserved protein known to 

be regulated primarily by oxygen concentrations. HIF is a protein involved in 

signaling survival mechanisms in cells under hypoxic, or low oxygen conditions 

(Goldberg and others 1988; Semenza and others 1991). HIF is a heterodimeric 

transcriptional regulator that upregulates the expression of over 100 genes, including 

glycolytic enzymes and vascular growth factors (for review (Ke and Costa 2006)). 

Recent estimates using DNA microarray analyses indicate that as much as 2% of 

human genes in arterial endothelia are regulated by HIF-1 (Manalo and others 

2005). HIF-1 was discovered by the identification of a hypoxia response element 

(HRE) present in the gene encoding for erythropoietin, the primary factor involved in 

the proliferation of red blood cells (Goldberg and others 1988; Semenza and others 

1991). The active HIF complex is a heterodimer comprised of an α and a β subunit. 

The α-subunit of HIF is constitutively degraded under normoxia, or normal oxygen 

conditions, by the HIF prolyl hydroxylase (HPH, or alternatively prolyl hydroxylase 

domain proteins or PHDs) enzymatic cycle. The HPH enzymes affix an –OH group 

to proline-402 or -564 resulting in ubiquitin-mediated degradation of the subunit 

(Masson and others 2001; Srinivas and others 1999). In hypoxic conditions, the 

availability of oxygen becomes a limiting factor that reduces the constitutive 

hydroxylation of HIF-α necessary for targeted degradation. As a result, HIF-α levels 

are stabilized which enables association with HIF-β, a generic transcription cohort 

5 



(Wang and others 1995). Once HIF-α/β have dimerized, the HIF complex 

translocates to the nucleus to associate with other transcription factors for targeted 

transcriptional upregulation. Another regulatory protein, factor inhibiting HIF (FIH), 

hydroxylates an aspartate residue in the HIF-α subunit in the nucleus in normoxic 

conditions. This hydroxylation prevents association with p300, an essential 

interaction for transcriptional activation, which inhibits hypoxia-induced gene 

expression (Dalgard and others 2004; Lando and others 2002a; Lando and others 

2002b).  
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 The HRE sequence previously discussed provided for the discovery of HIF 

(Goldberg and others 1988; Semenza and others 1991). Genes with an imbedded 

HRE sequence (5’-RCGTG-3’)1 are targeted by HIF upon activation, primarily by 

hypoxia (although other factors have been shown to activate HIF [for review (Ke and 

Costa 2006)]. One such encoding sequence is the VEGF gene (Levy and others 

1995). 

Transcriptional activation of biochemical molecules (ie, glycolytic enzymes, 

metabolic regulators) 

As stated in the previous section, HIF activation has been shown to 

upregulate the expression of over 100 transcripts (for review (Ke and Costa 2006)). 

Not only are molecular alterations necessary for protection and survival, but 

metabolism must also be affected in order to sustain physiological function. HIF is a 

known regulator of enzymes involved in glycolysis. Glucose transporter-1 and -3 

 
1 R = G or A 
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(Chen and others 2001), lactate dehydrogenase-A (Semenza and others 1996), 

glyceraldehyde phosphate dehydrogenase (Graven and others 1999), hexokinase-1 

and 2 (Mathupala and others 2001), and pyruvate dehydrogenase kinase (PDK)-1 

(Kim and others 2006; Papandreou and others 2006) and -3 (Denko and others 

2003) are just some in the long list of glycolytic enzymes that have been shown to 

have increased expression in response to hypoxia and HIF activation. In normal 

conditions, glucose transporters import glucose into the cytosol where it undergoes 

glycolytic metabolism to produce pyruvate. Pyruvate can then be converted to 

lactate or transported into the mitochondria. In the presence of oxygen, most cells 

further degrade pyruvate through PDC, the committed step providing entry into the 

TCA cycle. The cell may then further catabolize pyruvate to enable oxidative 

phosphorylation and increased energy production. Full oxidation of carbons from 

glucose through oxidative phosphorylation generates a 17-fold increase in 

adenosine tri-phosphate (ATP) levels compared to anaerobic pathways. In 1857 

Louis Pasteur recognized that in the presence of oxygen, cells metabolize glucose 

via cellular respiration in the mitochondria; however, in hypoxic environments, cells 

undergo fermentation. This is called the “Pasteur Effect” [(Pasteur 1857; Pasteur 

1859) (reviewed in English (Racker 1974)]. Recent understandings of molecular 

biology and biochemistry indicate that in response to HIF activation, PDK is 

upregulated. PDK inhibits PDC activity by phosphorylation at three serine sites. PDC 

inhibition drives fermentation, the phenomenon identified over a century and a half 

ago. HIF activation and alterations to glucose metabolism have subsequently been 

shown in many pathologic states, including cancer. 
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HIF and the Warburg Effect  

In 1924 Otto Warburg observed that cancer cells preferentially engaged 

glycolytic metabolism and terminated at the conversion of pyruvate to lactate 

(Warburg 1930; Warburg 1956). This occurred in the presence of oxygen, the 

opposite of the Pasteur Effect previously discussed where normal cells metabolize 

glucose through the TCA cycle and promote mitochondrial respiration under these 

conditions. The production of lactate via glycolysis in normoxic conditions has since 

been dubbed the “Warburg Effect”, also known as “aerobic glycolysis” in the 

literature, and is less efficient at producing ATP than complete metabolism through 

the TCA cycle and oxidative phosphorylation. This metabolic phenotype is 

commonly seen in cancer cells, as well as HIF activation in normoxic conditions (Kim 

and others 2007; Koukourakis and others 2005; McFate and others 2008; Robey 

and others 2005; Semenza 2007).  

 Our lab has recently shown that decreasing the lactate production by 

knocking down PDK translation via constitutively expressed small inhibitory hairpin 

RNA (shRNA) causes a shift from aerobic glycolysis (the “Warburg Effect”) to full 

oxidation of glucose and results in decreased metastatic qualities in tumor cell lines 

(McFate and others 2008). Therefore manipulation of a key metabolic pathway may 

be able to change metastatic phenotypes in cancerous tissues, thus identifying 

possible new therapeutic targets.  

Cancer hypermetabolism  

A diagnosis of cancer is reserved for uncontrolled cell growth with metastatic 

phenotypes like migration, invasion and metastasis into surrounding tissues 
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(Hanahan and Weinberg 2000). CNS cancers are among the most invasive and 

deadly observed. One type of CNS cancer known as glioblastoma multiforme (GBM) 

is an astrocyte-derived grade 4 cancer that results in death on average from six to 

12 months following diagnosis (Burton and Prados 2000; Miller and Perry 2007; 

Visted and others 2003). GBMs are notoriously resistant to therapeutic intervention 

and, due to the compacted and highly specific organization of the brain, are difficult 

to fully extract through surgical procedures (Burton and Prados 2000; Miller and 

Perry 2007; Nieder and others 2005; Terzis and others 2006). GBMs do metastasize 

and become increasingly deadly, though this metastatic event is rarely observed 

(Medhkour and Chan 2005; Mujic and others 2006; Newton and others 1992; Saad 

and others 2007). The aggressive nature of GBMs also makes it difficult to identify 

and treat these diseased tissues before the cancer becomes established or 

metastasizes (Aldape and others 2003; Nieder and others 2005; Terzis and others 

2006).  

The metastatic, metabolic, and proliferative qualities of GBMs exert a high 

demand of resources on surrounding CNS tissues. These qualities also cause 

healthy tissue to become necrotic, engulfed and degraded, or compacted leading to 

dysfunction (Burton and Prados 2000; Miller and Perry 2007). These cancerous 

phenotypes are also studied in vitro through cell culture and xenograph studies to 

better understand the basic biochemistry and cellular biology of GBMs. One such 

experimental model is the C6 glioma rat cell line, derived in the late 1960s by 

exposure of rat astrocytes to N,N’-nitroso-methylurea (Benda and others 1968). In a 

review article of in vitro experimental models of cancer, data on C6 glioma cells were 
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compiled and analyzed as a model closely associated to GBMs with respect to: 

morphology; adhesion protein expression and activity; metastatic behaviors; and 

biochemistry (Grobben and others 2002). It is for these reasons that the studies 

described in this work uses genetic transformations in C6 cells. 

Branched-chain amino acids in cancer 

Cancerous tissues are in a state of hypermetabolism due to increased 

catabolic and anabolic demands for producing double the amounts of energy, 

protein, and lipids for daughter cells. While glucose metabolism is altered in 

cancerous tissues [the theme of my colleague’s work (McFate and others 2008)], 

other essential metabolic and physiologic pathways are also dysregulated in 

cancerous diseases. Branched-chain amino acids (BCAAs) are a subset of essential 

amino acids, categorized as such due to human inability to synthesize these basic 

building blocks de novo. Given their multipotent roles in catabolism, anaplerosis, 

anabolism, and signaling, it may be no surprise that a disease such as cancer can 

have direct and indirect effects on BCAA pathways. 

Free amino acids circulate throughout the body and also accumulate in small 

pools in the intracellular environment. Hypermetabolic cancerous tissue can deplete 

the human body of these essential amino acids. Although BCAAs are involved in 

many pathways, both catabolic and anabolic, studies have shown that tumor-bearing 

physiology drives hypoanabolism and hypercatabolism of the skeletal muscle in 

animal models (Lorite and others 1997; Strelkov and others 1989). When this occurs 

in humans with cancer, called cachexia, muscle wasting is often severe (Lundholm 
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and others 1976).  Likewise, the breakdown of BCAA-rich skeletal muscle in the 

tumor-bearing state is documented in both the clinical setting (Hunter and others 

1989; Inculet and others 1987; Inui 2002; O'Keefe and others 1990) and animal 

models (Baracos and Mackenzie 2006; Tessitore and others 1993; Whitehouse and 

others 2001). While the breakdown of skeletal muscle elevates BCAA levels for use 

in catabolism, the general health of the organism is impaired making resilience and 

recovery to therapy immensely difficult. 

The tumor-bearing state is taxing to the organism, and metabolism is elevated 

in cancers. BCAAs are estimated to contribute 2-5% of total energy production in 

normal tissues, while they compose almost 25% of new proteins (Harper 1989). The 

precise pathways utilized in the cancerous or tumor-bearing state are unclear. 

However, where cachexia is a resultant influence of the cancerous tissue on the 

organism, the cancerous tissue itself requires the use of BCAAs for catabolic, 

anaplerotic, and anabolic pathways. The additional necessity of anabolism in these 

tissues makes them our primary target for metabolic manipulation. The proliferative 

and invasive phenotypes of some cancers require that BCAAs are supplied for the 

production of new proteins to build daughter cells upon division. 

Branched-chain Amino Acids 

BCAAs are important to many physiologic processes and have unique 

qualities, particularly to the human metabolic and molecular biological systems. They 

belong to a group of amino acids called essential amino acids that cannot be 
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synthesized in humans2, which indicates that they must be obtained by dietary 

consumption. Once introduced into the physiological system of humans, the 

essential amino acids are shuttled and shunted to various pathways; the BCAAs are 

no different. Due to recent discoveries, it may be beneficial to make a distinction 

between the classical and non-classical understandings of BCAAs where the 

classical refers to metabolic pathways and the non-classical refers to signaling 

pathways. 
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Metabolism through the BCKDC 

BCAAs largely bypass hepatic metabolism and are circulated throughout the 

body. Once BCAAs are within the cell membrane, they can proceed through many 

different metabolic fates; however, they must first be deaminated and/or 

decarboxylated in order to enter the biochemical system. Amine groups may be 

transferred between the carbon skeletons of amino acids by a number of 

aminotransferases that usually operate at or near equilibrium. There are two 

isotypes of branched-chain amino acid transaminases (BCAT); one is localized to 

mitochondria (BCATm) and is widely expressed in most tissues, and one is localized 

to the cytosol (BCATc) and selectively expressed in the brain, ovary, and placenta 

(Bixel and others 1997; Hall and others 1993; Hutson and Hall 1993; Hutson and 

others 1992; Ogawa and others 1970). The kinetic constants for both species are 

similar, with the KM values for leucine (1–1.3mmole/L) and α-ketoglutarate (~0.6 

mmole/L) exceeding the endogenous brain concentration of either substrate (~0.2 

mmole/L) (Erecinska and others 1984). Deamination liberates an amine group that 

 
2 other essential amino acids are lysine, methionine, phenylalanine, threonine and tryptophan 
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can be used in classical processes, such as urea synthesis, and non-classical 

processes, which are discussed in detail later. The resulting deaminated BCAA is a 

carboxylic acid, branched-chain α-keto acid (BCKA). The BCAT enzyme operates on 

LeChatlier’s principle of equilibrium since deamination is an easily reversible 

process. As such, the decarboxylation of the BCKAs is the most important step for 

their catabolism in humans (reviewed in (Harper 1989; Harper and others 1984)).  

Decarboxylation occurs through the BCKDC. This complex belongs to a 

family of three dehydrogenase complexes including pyruvate dehydrogenase 

complex (PDC) and 2-oxo-glutarate dehydrogenase complex. These dehydrogenase 

complexes share the same basic structure, perform the same basic reactions, and 

all require the same set of cofactors: thiamine pyrophosphate, FAD, NAD, lipoate, 

and coenzyme A (CoA). The BCKDC is organized around a cubic core consisting of 

24 lipoate-bearing dihydrolipoyl transacylase (E2) subunits, associated with the 

branched-chain alpha-keto acid decarboxylase/dehydrogenase (E1), 

dihydrolipoamide dehydrogenase (E3), BCKDC kinase (BDK), and BCKDC 

phosphatase (BDP). The E1 is formed by the α and β proteins interacting to form the 

two most important structures of the complex, the binding pocket for BCKAs and a 

crucial exposed Ser293 residue. Phosphorylation status of Ser293 indicates the 

activity state of BCKDC and is targeted by a specific kinase (Popov and others 1992; 

Shimomura and others 1990) and a phosphatase (Damuni and others 1984; Damuni 

and Reed 1987), although recent evidence has suggested isolation of another 

phosphatase (Joshi and others 2007). It has been established that the most potent 

inhibitor of BDK is the endogenous transamination product of leucine, KIC, indicating 
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that these metabolites promote their own metabolism. Decarboxylation of the BCKAs 

is the committed step in the catabolism of these molecules. After processing through 

the BCKDC, the metabolic products can be converted to acetyl-CoA and degraded 

for energy production (catabolism), used for fatty acid synthesis and energy storage 

(anabolism), or converted into intermediates to sustain biochemical pathways 

(anaplerosis). The combination of BCAA transport, BCAT reversible deamination of 

BCAAs, and the decarboxylation of BCKAs through BCKDC justify the supposition 

that BCKDC activity and intracellular concentrations of BCAAs and BCKAs govern 

the direction of BCAT activity.  

Complete catabolism of BCAAs and BCKAs occurs only part of the time. 

Once BCKAs have proceeded through the BCKDC, they result in ubiquitously 

produced small molecules involved in various metabolic pathways, such as 

gluconeogenesis, the citric acid cycle, and fatty acid synthesis. However, BCAAs 

and BCKAs are involved in alternate pathways prior to catabolism through BCKDC. 

New signaling roles have emerged (the comprehensive model)  

In contrast to the classical understanding of BCAAs as energy substrates, 

new discoveries have made way for an emergent non-classical signaling paradigm. 

A few notable examples occur in the CNS where BCAAs are transported across the 

blood-brain barrier by the LAT1 and 2 transporters. Once inside the neurochemical 

milieu, BCAAs are used for glutamate homeostasis. One-third of all amine groups 

incorporated into glutamate, the brain’s primary excitatory neurotransmitter, were 

found to originate in BCAAs; leucine alone supplies 30-50% to both glutamate and 
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glutamine, an important glutamate precursor and biochemical shuttling molecule 

(Kanamori and others 1998; Yudkoff and others 1990; Yudkoff and others 1983).  

Although BCAA biochemistry is extensive, in both its nature and the study of 

the different pathways, there are also signaling pathways involving the BCAAs. The 

BCAAs leucine and valine are known to play important roles in the regulation of 

protein synthesis through interactions with translational initiation factors, including 

the mammalian target of rapamycin (mTOR), although leucine has been shown to be 

the most potent in stimulating the mTOR pathway (Figure 1) (Anthony and others 

2000a; Kimball and Jefferson 2006; Lynch and others 2003). mTOR is a global 

regulator of cellular and molecular processes concerning cell survival. Briefly, 

activation of mTOR, a protein kinase, begins a cascade of events promote protein 

translation, such as: phosphorylation of 4E-binding protein 1 (4E-BP1) for the 

release of eukaryotic initiation factor-4E (eIF-4E) (Brunn and others 1997; Kimball 

and others 1996; Xu and others 1998); phosphorylation of S6 ribosomal protein 

kinase (S6RK) to activate downstream targets (Kimball and others 1999; Long and 

others 2000); and ribosomal biogenesis, although this is still considered a 

hypothesis by many which is refuted by some (Stolovich and others 2002; Tang and 

others 2001).  

The most recent data detailing leucine’s non-classical signaling role has been 

presented which details a further role of leucine-mTOR signaling in the 

hypothalamus (Cota and others 2006). Cota et al (2006) reported that leucine, acting 

through mTOR and other translational regulators, was able to initiate signaling to 
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regulate fuel availability and usage via the arcuate and paraventricular nuclei in the 

rat brain. These nuclei are located near the medial eminence, a circumventricular 

organ in the brain with a direct “window” to the blood supply. Such gaps in the blood-

brain barrier allow the careful monitoring and regulation of metabolites and 

hormones. As a result, hypothalamic signaling can occur adjusted to dynamic 

systemic needs based on feeding and fasting. The authors found that central 

administration of leucine resulted in increased hypothalamic mTOR signaling and 

decreased food intake and body weight (Cota and others 2006). This study further 

elaborated on leucine’s importance as a metabolic signaling molecule.  

Summary and Segue 

In light of the previously defined complex nature of BCAAs in physiological 

systems, we examined the role of BCAAs in HIF biology and cancer biochemistry. 

Our research questions were: what is the effect of increased BCAA levels in an 

organism with cancer (seen in rats and humans); and is there a greater role for 

BCAAs in cancer metabolism, especially in light of the fact that PDC is very clearly a 

metabolic switch? As previously stated, BCAA transaminated products (BCKAs) 

have been shown to stabilize HIF at high in vitro levels. Our first question is 

concerned with what occurs when BCAAs and BCKAs are present at lower levels 

and if HIF activation is robust enough to drive HIF-targeted transcriptional 

upregulation. Our second question is concerned with the hypermetabolic state 

present in cancer cells and if BCKDC can be manipulated in order to cause 

significant changes to cancer cell phenotypes. 
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Summary 
Branched-chain amino acids and ketoacids participate in several biochemical 

pathways and are emerging as novel signaling molecules. Leucine 

activates the mammalian target of rapamycin (mTOR) kinase, while its 

deaminated metabolite alpha-ketoisocaproic acid (KIC) can stabilize the 

hypoxia-inducible transcription factor, HIF-1. Since mTOR has been implicated 

in HIF-1 stabilization, we investigated whether the ability of KIC to stabilize 

HIF-1 involved mTOR activity. In rat C6 glioma cells, KIC treatment promoted 

the accumulation of HIF-1α  as well as a stably transfected green fluorescent 

protein containing the HIF-1α oxygen-dependent degradation domain.  

Inhibition of the HIF-1 decay mechanism by KIC was correlated with increased 

VEGF secretion by C6 cells. KIC also increased phosphorylation of the mTOR 

target protein S6R. However, while rapamycin treatment inhibited KIC-induced 

S6R phosphorylation, it did not affect KIC-induced HIF-1 stabilization or VEGF 

secretion. Instead, these rapamycin-insensitive KIC effects were selectively 

reversed by ascorbate, a cofactor required by the proly-hydroxylase domain 

proteins, which control HIF-1 decay. KIC also promoted ascorbate sensitive 

HIF-1α accumulation and VEGF secretion in primary rat astrocytes. These 

results suggest that KIC may reversibly inactivate proly-hydroxylase domain 

proteins independently of mTOR activity.   
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The branched-chain amino acids (BCAAs: leucine, isoleucine, and valine), 

whose side chains contain a branched methyl group, are essential amino acids 

known to be involved in several biochemical pathways. Leucine, isoleucine, and 

valine are deaminated by a specific branched chain amino acid transferase to their 

respective branched chain α-ketoacids (BCKAs) 2-ketoisocaproate (KIC), 2-

ketoisovalerate (KIV), and 2-keto-3-methylvalerate (KMV) (Hutson and others 1988). 

BCKAs are then catabolized through the mitochondrial branched-chain α-keto acid 

dehydrogenase complex (BCKDC), which is composed of multiple subunits, 

including the regulatory branched chain ketoacid dehydrogenase E1-α subunit 

(BCKDH-α) (Danner and others 1978; Parker and Randle 1978; Pettit and others 

1978; Roberts and Sokatch 1978). BCKDC is regulated by reversible inhibitory 

phosphorylation of BCKDH-α through the actions of a branched chain 

dehydrogenase kinase (BDK) (Popov and others 1992; Shimomura and others 

1990) and an unidentified phosphatase (Damuni and others 1984; Damuni and Reed 

1987). The catabolism of BCAAs via the transaminase and the BCKDC generates 

acyl-CoA intermediates which undergo dehydrogenation. Ultimately, leucine is 

converted to acetyl-CoA and acetoacetate; isoleucine to acetyl-CoA and succinyl-

CoA; and valine to succinyl-CoA. In some tissues, these final products can be fully 

oxidized via the citric acid cycle, while in others these are directed toward the 

synthesis of ketone bodies (acetoacetate and acetyl-CoA) and glucose (succinyl-

CoA) (Greenberg and Reaven 1966; Noda and Ichihara 1974; Noda and Ichihara 

1976).  
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BCAAs are also used as anabolic building blocks for de novo protein 

synthesis. Whereas all three BCAAs serve equally prominent roles in these 

biochemical pathways, leucine has emerged as an important signaling molecule as 

well. Leucine has been shown to stimulate protein synthesis via mobilization of the 

protein translation machinery through activation of mammalian target for drug 

rapamycin (mTOR) activity (Kimball and others 1999). Leucine also promotes insulin 

synthesis and secretion (Lambert and others 1986), and inhibits autophagy (Mordier 

and others 2000). In biochemical pathways restricted to central nervous system 

tissue leucine plays an important role in maintaining homeostasis of glutamate, the 

brain’s major excitatory and most abundant neurotransmitter (Yudkoff and others 

1996; Yudkoff and others 1990; Yudkoff and others 1983). More recently, signaling 

actions of leucine in the hypothalamus have been implicated in the regulation of 

feeding behavior (Cota and others 2006).  

Accumulation of BCAAs and BCKAs has also long been known to contribute 

to the pathogenesis of BCKDC deficiency, which is commonly known as maple 

syrup urine disease (Dancis and others 1960). Symptoms of this condition begin in 

early infancy and include poor feeding, vomiting, dehydration, lethargy, hypotonia, 

seizures, ketoacidosis, and neurological decline (Chuang and others 2006). 

However, the pathophysiology underlying the nervous system effects remains 

unclear and has not been linked to the signaling roles identified for BCAAs. A better 

appreciation of BCAA signaling roles may thus help clarify the regulation of 

important physiological and pathological processes. 
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 Novel signaling actions of many other metabolic intermediates have also 

become elucidated in recent years. Glycolytic metabolites and tricarboxylic acid 

(TCA) cycle intermediates have also been shown to promote insulin secretion 

(MacDonald and others 1989), regulate hypothalamic hunger signals (Lam and 

others 2005), induce angiogenesis (Murray and Wilson 2001),  and promote 

stabilization of the hypoxia inducible transcription factor HIF-1 (Isaacs and others 

2005; Lu and others 2005; Lu and others 2002; Pollard and others 2005; Selak and 

others 2005).  Cell survival in hypoxic environments is critically dependent upon HIF-

1 in both normal and neoplastic tissues (Dalgard and others 2004; Lu and others 

2005; Lu and others 2002). Our recent study evaluating the effect of BCAAs on HIF-

1α stabilization showed that BCKAs could also stabilize HIF-1α levels (Lu and others 

2005).  

Under normal oxygen conditions (or normoxia) HIF-α is constitutively 

synthesized but rapidly degraded by specific HIF prolyl hydroxylases, referred to as 

prolyl hydroxylase domain proteins 1-3 (PHD 1-3) (Wang and others 1995). The 

PHD enzymes require the cofactors iron, ascorbate (Knowles and others 2003) and 

the tricarboxylic acid [TCA] cycle intermediate α-ketoglutarate (Bruick and McKnight 

2001; Ivan and others 2001; Jaakkola and others 2001), for sustained enzymatic 

activity. PHDs transfer hydroxyl (-OH) groups derived from dissolved O2 onto two 

proline residues located in the oxygen-dependent degradation (ODD) domain of the 

HIF-α protein (Hon and others 2002; Masson and others 2001; Min and others 2002; 

Srinivas and others 1999). This oxygen dependent post-translational modification 

acts as a recognition signal for the ubiquitin-mediated degradation of HIF-α subunits. 
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In the absence of atmospheric oxygen, HIF-α protein levels increase, dimerize with 

HIF-β (Gradin and others 1996; Kallio and others 1997; Wood and others 1996), 

translocate to the nucleus, and activate transcription of many genes that promote 

hypoxic survival. Another HIF-α hydroxylase known as the factor inhibiting HIF (FIH) 

governs the hydroxylation of an asparagine residue on HIF-α (Hewitson and others 

2002; Lando and others 2002a; Lando and others 2002b; Sang and others 2002), 

thus regulating its association with other transcriptional cofactors.  

Along with hypoxia, PHD enzyme activity can be inhibited by reducing the 

interaction of cofactors with the enzyme.  Thus, iron chelators, α-ketoglutarate 

analogues (Bruick and McKnight 2001; Ivan and others 2001; Jaakkola and others 

2001), and ascorbate deficiency (Knowles and others 2003) can blunt PHD activity 

and enhance HIF-1 accumulation. In fact, the effect of on BCKAs on HIF-1 

stabilization was discovered through a screen of biological α-ketoacids with 

structural similarity to α-ketoglutarate (Lu and others 2005). However, given the 

wider emerging signaling roles of BCAAs, it is possible that the BCKA effect we 

observed on HIF-1 also involved other pathways. In particular, mTOR has been 

shown to be both an upstream regulator of HIF signaling in cancer cells (Hudson 

and others 2002) and a regulatory target potently influenced by leucine (Anthony 

and others 2000b). Thus it remains unknown whether the BCKA effect on HIF-1 

regulation is mediated selectively via the PHDs or via mTOR. Given the potential 

widespread impact of α-ketoacid signaling mechanisms, the present study further 

investigated the role of BCKAs (and BCAAs) in the stabilization of HIF-α to clarify 

this question.  
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Experimental Methods 
All chemicals were purchased from Sigma-Aldrich and cell culture products were 

purchased from GIBCO, unless otherwise stated. 

Transgenic ODD-GFP C6 Glioma Cell Line 

The generation of the ODD-GFP C6 glioma cell line has been previously 

described (D'Angelo and others 2003). The ODD is the portion of the HIF-1α protein 

that is hydroxylated and subsequently degraded by the ubiquitin ligase molecular 

machinery. Fusion of the HIF-1α ODD to a GFP molecule allowed GFP 

immunodetection to serve as a probe for the PHD mediated degradation of HIF-1α. 

Cell culture and Chemical Treatments 

Cells were cultured in Dulbeco’s Modified Eagle Media (DMEM, Invitrogen) 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin, and 

1.5 mg/mL G418 (Gibco). G418 was used to select transgenically altered cells. Cell 

lines were maintained in 21% O2, 5% CO2, and 74% N2 in a humidified cell incubator 

at 37°C. Chemical treatments were performed in Krebs Saline Buffer and incubation 

times are as indicated. Each chemical treatment was performed by dilution from 

100X stock in Krebs saline buffer. For cell hypoxia treatment, the culture dishes 

were sealed in a modular incubator chamber, flushed with gas containing 1% O2, 

5%CO2, and 94% N2 for 5 min, and incubated in this environment at 37ºC for the 

indicated times. 

Primary Astrocyte-enriched Cell Cultures 
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Primary cultures from derived from rat postnatal day 2 cerebral cortex were 

prepared as described (Armstrong 1998). Briefly, brains were surgically extracted, 

digested with protease, and plated in poly-D-lysine coated tissue culture flasks. 

Cultures were maintained in DMEM with 10% fetal bovine serum (FBS): DMEM (Life 

Technologies) supplemented with 1 mM sodium pyruvate (Sigma) and 25 mg/ml 

gentamicin (Life Technologies). Following 10 days in culture the flasks were placed 

on a rotary shaker (190rpm) for 18h to dislodge immature oligodendrocyte lineage 

cells and microglia. The remaining cells were astrocyte-enriched populations. 

Astrocyte cultures were refreshed every 72h with DMEM medium containing 10% 

FBS supplemented with 1mM sodium pyruvate and 25mg/ml gentamicin.  

Western Blot and Densitometry Analyses 

Cells were washed three times with cold PBS. Appropriate amount of lysis 

buffer containing Radio Immuno Precipitant Assay (RIPA) buffer (Tris-HCL, pH 7.4 

[50mM], NaCl [150mM], NP-40 [1%], Sodium deoxycholate [0.5%], SDS [0.1%], and 

EDTA [5mM]; Bioworld), 1% SDS, and 1X protease inhibitor cocktail (Roche) then 

scraped. Cell remnants were then collected in 1.5 ml microcentrifuge tubes. The cell 

material was sonicated for 25 seconds at 50 Hz, then placed in rack at room 

temperature. Cell lysates were then spun for 5 minutes at 12,000 g and the 

supernatants were transferred to fresh tubes. Protein levels were determined by the 

BCA method of analysis (Pierce). Proteins were separated on 4-12% Bis-Tris SDS-

polyacrylamide gradient gels (Invitrogen) and transferred to nitrocellulose 

membranes (Invitrogen). Membranes were blocked using 5% goat or horse serum 

(Vecotr Labs) in Tris buffered saline with 0.1% Tween-20. Antibodies used were 
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anti-HIF-1α 1:500 (Bioscource, Novus), anti-HIF-1β 1:1000 (Biosource, Novus), anti-

phospho-Ser292-E1α BCKDH (generous gift from C. Lynch, 1:20,000) (Lynch and 

others 2003), anti-E1α BCKDH (generous gift from C. Lynch, 1:1000) (Lynch and 

others 2003), anti-GFP 1:1000 (Roche), anti-phospho-S6R 1:1000 (Cell Signaling), 

and anti-β actin 1:10,000 (AbCam). Protein bands were visualized by enhanced 

chemiluminescence (Pierce) using either Kodak film and developer or CCD 

luminescence camera (Fuji Film). Signals were quantified using densitometry in 

ImageJ (Wayne Rasband, NIH). Phosphoproteins and HIF-1α were normalized to 

total protein amounts and HIF-1β, respectively, unless otherwise stated. The β-actin 

levels of non-phosphoproteins were statistically compared. If β-actin levels differed, 

the data were not used in the subsequent analysis. Graphs indicate arbitrary units 

on the y-axes derived from signals normalized to non-treated or wild type controls by 

direct comparative ratios. These normalizations were necessary to control for protein 

loading. 

Enzyme Linked Immunosorbent Assay 

Cells were cultured to 100% confluency in 6-well cell culture plates. 

Experimental conditions were applied and the cells were incubated for 12 hours 

under culture conditions. 50μL of media was extracted and used in a Quantikine Rat 

VEGF (vascular endothelial growth factor) ELISA assay kit (R&D Systems Inc.)  

Absorbance was read at 405nm generating pg/mL VEGF protein. Cells were 

trypsinized and counted using the ViCell Trypan Blue automated cell counter 

subsequent to media extraction for ELISA. Cell numbers were used to normalize the 
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data to account for differential plating and proliferation confounders. Data is 

represented as pg VEGF protein per mL media per hundred cells. 

Cell counting 

Cell were washed and trysinized for cell counting procedures for ELISA 

normalization. Trypsin was inactivated by adding equal amounts of media with 10% 

FBS. Five hundred μL of suspensions of each preparation were then placed in a Vi-

Cell Trypan Blue automated counter for cell counting. 

Statistical Analyses 

Statistical analyses ANOVA, Tukey’s HSD and Fisher’s PLSD post hoc tests 

were performed using STATview statistical software. Where it was necessary to 

compare treatment only to control groups, ANOVA and Dunnett’s post hoc analyses 

were performed in SPSS statistical software. 

Results 

KIC induced HIF-1 stabilization is independent of mTOR activity 

KIC can be reversibly transaminated to produce leucine, which can activate 

mTOR, a kinase that regulates protein translation via phosphorylation of proteins 

such as S6R. In some studies, mTOR activation has been implicated in increasing 

HIF-1α (Hudson and others 2002) and VEGF protein levels (Humar and others 

2002), suggesting that this could be one mechanism for the previously observed 

HIF-1α stabilization by KIC. Alternatively, stabilization of HIF-1α by α-ketoacids has 

been proposed to result from a reversible inactivation of PHD enzymes (Lu and 

others 2005). This conclusion is supported by the rapid reversibility of α-ketoacid 

mediated HIF-1α accumulation by ascorbate and Fe2+ (Lu and others 2005; Lu and 
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others 2002). To determine which of these mechanisms is involved in KIC induced 

HIF-1α accumulation we sought to determine the relative sensitivity of the KIC-

induced HIF-1α accumulation to either ascorbate or rapamycin, a well known mTOR 

inhibitor (Brown and others 1994; Sabatini and others 1994; Sabers and others 

1995). We employed immunodetection of pSer235/236S6R to assess mTOR activity 

and ODD-GFP stabilization to assess PHD activity.  

As shown in figure 1A and 1B, when ODD-GFP transfected C6 glioma cells 

were treated with hypoxia (1% O2) vs. KIC (2mM) for 3h, only KIC treatment 

demonstrated significant increase of pSer235/236S6R immunoreactivity in cell extracts. 

Moreover, rapamycin treatment (0.1ng/ml) completely prevented S6R 

phosphorylation while ascorbate treatment (100μM) did not. In the same cell 

extracts, we also examined changes in HIF-1α and HIF-1β immunoreactivity. As 

shown in figure 1A and 1C, both hypoxia and KIC treatment led to a significant 

accumulation of HIF-1α with no change in HIF-1β. The KIC induced HIF-1α 

accumulation was clearly far more sensitive to inhibition by ascorbate than by 

rapamycin. ODD-GFP accumulation was also stimulated by KIC and this effect was 

selectively inhibited by ascorbate but not by rapamycin (figure 1A, 1D).  

Functional HIF-1 induced gene expression requires nuclear translocation of 

the HIF-1α/HIF-1β heterodimer and interaction with the transcriptional coactivator 

CBP/P300 (Arany and others 1996). This latter step is normally kept inhibited by the 

asparagine hydroxylase FIH (Lando and others 2002a; Lando and others 2002b; 

Sang and others 2002). Full gene expression also requires DNA transcription and 

mRNA translation to produce functional protein. In order to assess whether the KIC 
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induced HIF-1α accumulation that we observed was effective in activating gene 

expression, we measured the media accumulation of VEGF protein, a well known 

target of HIF-1α following 12h culture. As shown in figure 1E, both hypoxia and KIC 

significantly increased media VEGF levels and the KIC effect was selectively blunted 

by ascorbate and not by rapamycin. Similar results were also seen with leucine 

treatment (figure 1F). These results supported the notion that KIC induced HIF-1α 

accumulation is mediated by reversible inactivation of PHD activity and is not 

significantly impacted by mTOR activation.  

 HIF-1α stabilization and BCKDα phosphorylation show reciprocal dose 

responses to KIC 

 The BCKAs KIC, KIV, and KMV have been shown to increase HIF-1α levels 

in normoxic conditions at high doses. At these high doses these α-ketoacids may 

have antioxidant and other non-specific actions. Moreover, in living cells, these 

ketoacids may also be rapidly metabolized through BCKDC activity. BDK normally 

regulates the BCKDC through inhibitory phosphorylation of the BCKDHα subunit at 

Ser292. KIC is the chief endogenous inhibitor of BDK, a mechanism that normally 

allows feed-forward activation of the BCKDC to maintain low levels of KIC. These 

complex fuel routing mechanisms may thus impact the selectivity of signaling 

functions for KIC. We therefore determined whether the state of inhibitory BCKDHα 

phosphorylation at Ser292, correlated with the effect of KIC on HIF-1α stabilization. 

To accomplish this, C6-ODD-GFP cells were treated with concentrations of KIC 

ranging from 1 to 3000 μM. The treated cells were then harvested for analysis of 

HIF-1α levels and phosphorylation status of BCKDH-α Ser292. A representative 

28 



827 

828 

829 

830 

831 

832 

833 

834 

835 

836 

837 

838 

839 

840 

841 

842 

843 

844 

845 

846 

847 

848 

849 

dose-response curve for KIC effect on HIF-1α accumulation and BCKDH-α pSer292 

levels via Western blotting is shown in Fig. 2A. Densitometric analysis of blots is 

shown in Fig. 2B with standardization to non-treated controls. Increased HIF-1α 

signal relative to non-treated controls could be seen at the 10 μM dose of KIC 

(p=0.001) and all concentrations from 30 μM KIC to 3000 μM KIC showed significant 

HIF-1α accumulation (p<0.0001). Phosphorylation of BCKDH-α Ser292 is shown as 

the ratio of phosphorylated to total protein for internal standardization. Treatments of 

cells with 1, 10 and 30 μM KIC resulted in significantly decreased phosphorylation 

ratios of BCKDH-α  with respect to non-treated controls (p<0.0001) with no BCKDH-

α phosphorylation being observed at higher doses. These data indicated that despite 

inhibition of BCKDH phosphorylation, BCKAs such as KIC can still promote HIF-1 

stabilization. We did however observe a complex dose response curve for KIC in 

stabilizing HIF-1 which suggested the interaction of more than one process to the 

overall effect. 

KIC and leucine induced VEGF production displays a biphasic response 

 Given our demonstration of the ability of KIC to participate in distinct signaling 

and metabolic pathways in the same cell type, we wondered whether the overall 

production of HIF-1 mediated gene expression by this α-ketoacid would show a 

linear dose response or one that was more complex.  We therefore investigated the 

dose response of KIC in promoting an increase in media VEGF. C6-ODD-GFP cells 

were treated with increasing concentrations of KIC as well as leucine ranging from 

100 to 5000 μM. Positive and negative controls were also included using hypoxia 

(1% O2) and vehicle-treated conditions, respectively. The treated cell media was 
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then harvested after 12h and analyzed by the ELISA technique. Cells were then 

counted with the ViCell Trypan blue automated cell counter. We found increased 

secretion of VEGF protein in hypoxia positive-control condition (Figs. 2C and D; 

p<0.0001). However, the dose-response curves for KIC and leucine were bimodal 

(Fig.2C and D). Thus while 0.1mM KIC produced significant increase in VEGF 

production, 0.5mM KIC did not. However, subsequently increasing concentrations of 

KIC did produce a significant increase in VEGF. A similar biphasic dose response 

was observed with leucine although the required effective dose range was higher 

than that for KIC.  

KIC stabilizes HIF-1α and promotes VEGF expression in primary astrocyte 

cultures 

We also addressed whether the effects of KIC that we observed in the C6 

glioma cell line could be observed in primarily cultures of non-transformed cells. We 

thus treated astrocyte-enriched primary rat brain cultures with hypoxia, or with KIC 

[0.1 and 1.0 mM] with and without ascorbate [100 μM]. Media from treated cells were 

analyzed by ELISA (Fig. 3C). Treated cells were harvested and analyzed by 

Western blotting for HIF-1α and -β. A representative Western blot of analyses is 

shown in Fig. 3A. Densitometry of these blots is plotted in Fig. 3B. The positive-

control hypoxia treatments resulted in significant increases from all other treatments 

(p<0.001 for all comparison). Both the 0.1 mM and 1.0 mM KIC treatments resulted 

in increased HIF-1α/β ratios relative to non-treated controls (p<0.05 for both 

comparisons). The results of the two KIC alone treatments did not differ statistically 

from one another. The KIC treatments showed significantly increased HIF-1α/β 
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ratios vs. treatment with KIC and ascorbate (p<0.05 for both comparisons). The two 

KIC treatment doses with ascorbic acid did not differ from each other. These data 

indicate that KIC indeed stabilizes HIF-1α protein levels at normoxia in normal non-

neoplastic cells as well. 

KIC-induced, ascorbate-reversible VEGF protein expression was also observed in 

media taken from the primary astrocyte cultures (Fig. 3C). The non-treated controls 

showed much lower VEGF protein compared to the positive-control hypoxia 

(p<0.0001) and the two doses of KIC (p<0.0001). No differences were seen however 

between non-treated controls and either of the KIC treatments when ascorbic acid 

was included.  

Discussion 

BCAAs and BCKAs are known to be involved in multiple biochemical 

pathways and are also becoming appreciated for their signaling functions. Previous 

work from our lab identified BCKAs as being among a few naturally occurring α-

ketoacids that were capable of stabilizing HIF-1α levels (Lu and others 2005). 

Among the BCKAs this effect was greatest for KIC. In this report, we have 

elaborated on this previous work to show this action to be independent of mTOR. 

KIC was shown to activate signaling via mTOR as indicated by its enhancement of 

rapamycin sensitive S6 phosphorylation. KIC was also able to decrease 

phosphorylation of BCKDHα. However, the ability of KIC to promote HIF-1α 

stabilization and produce VEGF elaboration appeared to result from an interference 

of PHD activity. This was supported by the ability of ascorbate to reverse both of 

these actions and also by the ability of KIC to promote ODD-GFP accumulation in an 
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ascorbate-reversible manner. The latter tool is driven by constitutive expression 

under a CMV promoter and the protein product is degraded specifically by O2-

dependent hydroxylation via the PHD enzymes (D'Angelo and others 2003). 

Interestingly ascorbate treatment of C6 transgenic cells led to a decreased level of 

ODD-GFP fusion protein as compared to non-treated controls (Figure 1D). This is 

possibly due to the normal homeostatic relationship between ODD-GFP expression 

and PHD activity which results in a basal level of protein (evidenced by the former) 

and the addition of ascorbate may increase the PHD degradation cycle turnover 

(evidenced by the latter), thus reducing the normal basal level to a non-detectable 

signal. 

 In addition to these actions, BCKAs participate in transamination events, 

possess antioxidant capabilities and also influence the bioenergetic status of cells. 

Thus, it is not surprising that we observed unusual dose response curves for VEGF 

elaboration by KIC and leucine. Although a clear explanation for this effect requires 

further experiments, the differential dose dependent actions of KIC on the distinct 

biological effects demonstrated and described above may account for this 

phenomenon. It is possible that KIC and leucine are capable of inactivating PHDs at 

low doses. However, BCKDC activation by higher doses of KIC due to inhibition of 

BCKDHα phosphorylation may lower the effective concentration of KIC for 

performing this action. Although other explanations may be possible, our results do 

clearly demonstrate the ability of KIC to stabilize HIF-1 in living cells and show for 

the first time the ability of KIC and leucine to promote VEGF production. This latter 

action may have clinical relevance. 
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High accumulation of BCAAs and BCKAs is a hallmark of maple syrup urine 

disease (Dancis and others 1960). One of the most ominous presentations of this 

disease is cerebral edema (Brismar and others 1990; Riviello and others 1991). Our 

demonstration that KIC could induce HIF-1α stabilization and VEGF elaboration in 

primary astrocytes suggests that this signaling mechanism may play a role in the 

pathogenesis of cerebral edema in maple syrup urine disease. This is because 

VEGF is well known to be a key contributor to edema through its action on vascular 

permeability (Josko and others 2000). Moreover, our demonstration that ascorbate 

can reverse KIC-induced VEGF elaboration from astrocytes suggests a possible 

simple treatment that can be tested in this clinical condition. Finally, given the 

prominent role of HIF-1 biology in cancer progression, our results suggest that a role 

for altered BCKDC biology in cancer should be further evaluated. 
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Figure 1. BCAAs and BCKAs stabilize HIF-1α in normoxia, reversible by 

ascorbate treatment.  

A. Representative blots loaded with 20μg of whole-cell protein extracts from C6-

ODD-GFP cells were analyzed for HIF-1α, ODD-GFP, HIF-1β, and phospho-S6R 

proteins (time=3hrs, n=4). B, C, D. Densitometric analyses of signals of 

pSer235/236S6R, HIF-1α/β, and ODD-GFP, respectively, are displayed in densitometry 

units normalized to non-treated controls. The specific conditions for treatments 

presented in the figure are hypoxia [1% O2, 5% CO2, and 94% N2], KIC [2.0 mM], 

rapamycin [0.1 ng/mL], and ascorbate [100 μM]. Statistical significances were 

determined by Tukey’s HSD post hoc analysis (*p<0.05 compared to control; 

**p<0.001 compared to control; +p<0.05 compared to ascorbate treatment; 

++p<0.001 compared to ascorbate treatment; ##p<0.001 compared to rapamycin 

treatment). E, F. C6-ODD-GFP cells were analyzed for VEGF protein by ELISA. 

Secreted protein was normalized to viable cell number determined by trypan blue 

uptake. The specific conditions for treatments presented in the figure are hypoxia 

[1% O2, 5%CO2, and 94% N2], KIC [2.0 mM] (E.), leucine [ 2.0 mM] (F.), rapamycin 

[0.1 ng/mL], and ascorbate [100 μM]. (time=12hrs, n=4). Statistical significances 

were determined by Tukey’s HSD post hoc analysis (*p<0.05 compared to control; 

**p<0.001 compared to control; +p<0.05 compared to ascorbate treatment; 

++p<0.001 compared to ascorbate treatment). 
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Figure 2. Dose-response for BCAAs and BCKAs on HIF-1α level stabilization 

and functional roles in gene upregulation   
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A. Representative blots loaded with 20μg of whole-cell protein extracts from C6-

ODD-GFP cells are shown for treatments corresponding to 0.5 increment increases 

on the log scale (time=3hrs, n=3). B. Densitometric analyses of HIF-1α and 

phosphorylation status of Ser292-E1α BCKDH. Data are normalized to non-treated 

control. C. Graph indicating non-treated control, positive control hypoxia [1% O2, 

5%CO2, and 94% N2], and dose-response of the BCKA KIC at 0.1, 0.5, 1.0, 2.5, and 

5.0 mM (time=12hrs, n=4). D. Graph indicating non-treated control, hypoxia positive 

control, and dose-response of the BCAA leucine at 0.1, 0.5, 1.0, 2.5, and 5.0 mM 

(time=12hrs, n=4). Protein secretion levels shown in C. and D. are normalized to cell 

number. Statistical significances were determined by Dunnett’s post hoc analysis 

(*p<0.05 compared to control; **p<0.001 compared to control). 

 

Figure 3. KIC induces HIF-1α stabilization in primary astrocyte-enriched rat 

cultures, reversible by ascorbate treatment.  

Representative blots loaded with 20μg of whole-cell protein extracts from primary 

astrocyte-enriched cell cultures were analyzed for HIF-1α and HIF-1β proteins for 

non-treated control, hypoxia [1% O2, 5%CO2, and 94% N2], KIC [0.1 and 1.0 mM], 

and KIC treatments with ascorbate [0.1 mM] (time=3hrs, n=4). B. Densitometric 

analyses of HIF-1α/β signals displayed in densitometry units normalized to non-

treated controls showing statistical significances as determined by Tukey’s HSD post 

hoc analysis (*p<0.05 compared to control; **p<0.001 compared to control; +p<0.05 

44 



compared to 0.1 mM KIC ascorbate treatment; #p<0.05 compared to 1.0 mM KIC 

with ascorbate treatment). C. Primary astrocyte-enriched cultures were analyzed for 

VEGF protein secretion by ELISA for non-treated control, hypoxia [1% O2, 5%CO2, 

and 94% N2], KIC [0.1 and 1.0 mM], and KIC treatments with ascorbate [0.1 mM] 

(time=12hrs, n=4). Protein levels were normalized to cell number for each sample 

prior to statistical analyses. Statistical differences were determined by Tukey’s HSD 

post hoc analysis (***p<0.0001 compared to control; +++p<0.0001 compared to 

0.1mM KIC with ascorbate treatment; ###p<0.0001 compared to 1.0mM KIC with 

ascorbate treatment). 
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Figure 1. BCAAs and BCKAs stabilize HIF-1α in normoxia, reversible by 
ascorbate treatment 
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Figure 2. Dose-response for BCAAs and BCKAs on HIF-1α level stabilization 
and functional roles in gene upregulation 
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Figure 3. KIC induces HIF-1α stabilization in primary astrocyte-enriched rat 
cultures, reversible by ascorbate treatment 
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Alterations to branched-chain amino acid metabolism increase in vitro 

malignant characteristics of C6 glioma cells 
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Summary 

Branched-chain amino acids (BCAAs) participate in several biochemical pathways 

and are emerging as novel signal-initiating molecules. BCAAs are exclusively 

metabolized through the branched-chain α-ketoacid dehydrogenase complex 

(BCKDC), a mitochondrial macroenzyme complex, which is regulated through 

reversible phosphorylation. Cancer cells are in a state of hyperactivity utilizing 

metabolic substrates for energy (catabolism), for synthesis of new molecules 

(anabolism), and/or replenishing pools of intermediary metabolites (anaplerosis).  

Here we sought to better understand the impact of BCAA metabolism on cancer 

cells by altering the activity state of the BCKDC. We successfully created a shRNA 

protein knockdown system for the BCKDC kinase (BDK) in C6 glioblastoma cells, 

thus preventing phosphorylation and increasing activity of BCKDC. We found BDK 

knockdown cells had greater proliferation, invasion, and migration rates compared 

with control vector and wild type cell lines. We also found an increased lactate 

output for the BDK knockdown cells and pyruvate dehydrogenase complex (PDC) 
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phosphorylation, both are hallmarks of “The Warburg Effect”. These data indicate 

compensatory changes occur to retain metabolic homeostasis as cancer cells are 

forced to promote BCAA oxidation. The result is increased progressive in vitro cell 

behavior. Our conclusion is that these two metabolic systems, BCKDC and PDC, 

may not act independently of one another in cancer cells.
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Introduction 

 Branched-chain amino acids (BCAAs: leucine, isoleucine, and valine) 

comprise a subgroup of essential amino acids that cannot be synthesized de novo 

and have multipotent roles in both biochemistry and signaling biology. Leucine is 

particularly potent, if not singularly effective, in many signaling pathways (eg, 

translational activation (Mordier and others 2000), insulin synthesis and secretion 

(Lambert and others 1986), inhibition of autophagy (Mordier and others 2000), and 

hypothalamic satiety signaling (Cota and others 2006)). BCAAs can also be 

deaminated to α-keto acids and metabolized for fatty acid synthesis and β-oxidation 

(Greenberg and Reaven 1966; Noda and Ichihara 1974; Noda and Ichihara 1976). 

Owing to these many biological pathways open to BCAAs, it is peculiar that their 

irreversible metabolism is known to be governed by one multi-enzyme complex, the 

branched-chain α-keto acid dehydrogenase complex (BCKDC).  

 The BCKDC is composed of E1, E2 and E3 subunits, similar to other 

dehydrogenases, pyruvate dehydrogenase complex (PDC) and α-ketoglutarate 

dehydrogenase complex (Harris and others 1995). First step metabolism proceeds 

through the heterodimeric E1 subunit comprised of two α subunits and two β 

subunits (Danner and others 1978; Parker and Randle 1978; Pettit and others 1978; 

Roberts and Sokatch 1978). The BCKDC is active when the serine residue 292 on 

the E1α subunit is dephosphorylated and is inactive upon phosphorylation. This 

reversible phosphorylation is regulated by a specific kinase (BDK) (Popov and 

others 1992; Shimomura and others 1990) and phosphatase (BDP) (Damuni and 

others 1984; Damuni and Reed 1987). The biochemical processes occurring through 
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the BCKDC are irreversible. Therefore, the careful regulation of the BCKDC is the 

most important step in BCAA metabolism.  

 In normal tissues, BDK and BDP carefully control the activity of the BCDKC. 

This control regulates the amount of free BCAAs available not only for catabolic 

energy production, but also anabolic and signaling requirements. Anabolic demands 

for BCAAs include fatty acid synthesis and single amino acids used in the synthesis 

of proteins. In the absence of sufficient amounts of BCAAs, the translation is unable 

to occur. This is not only owing to the lack of BCAAs, but also the signaling roles 

BCAAs have in initiating translation. Leucine in particular has been shown to initiate 

translational machinery indirectly by stimulating insulin secretion and directly via the 

mammalian target of rapamycin (mTOR) (Kimball and others 1999). The fate of 

BCAAs amidst these different pathways is carefully controlled in the normal state. 

However, it has been shown that when tissues and cells are in a state of 

hypermetabolism (ie, cancer (Baracos 2000; Baracos and Mackenzie 2006)), the 

free pool of BCAAs is used up rapidly for energy and protein synthesis requirements. 

Increasing energy demands of tumor-bearing rats have been shown to increase 

leucine oxidation measured by radio-labeled CO2 release (Costelli and others 1995), 

indicating a systemic depletion of leucine in the host organism through BCKDC 

activity. As a compensatory mechanism to refill the rapidly depleting free BCAA pool 

in patients with severe, invasive cancer, skeletal muscle, which is rich in BCAAs, is 

degraded. 

 The compensatory increases in free BCAAs, high protein turnover rates, and 

high oxidation rates cause increased BCKA levels, at least transiently. Our lab has 
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recently shown high levels of BCKAs have signaling properties through the hypoxia 

inducible factor (HIF) (manuscript in submission). This survival factor is known to 

play an important role in cancer, particularly in altering transcription of essential 

proteins for proliferation, invasion, and compensatory metabolism (reviewed in (Ke 

and Costa 2006; Semenza 2007)). HIF specifically alters glucose metabolism by 

increasing glucose transporters, PDC kinase (PDK), and lactate dehydrogenase 

(LDH), to name just a few. These actions drive anaerobic glycolysis which is 

advantageous since it has been shown that tumors exist in a hypoxic environment. 

However, this effect has been shown in the presence of oxygen, an observation 

known as the Warburg Effect (Warburg 1930; Warburg 1956). Regardless of the 

many changes that occur as a result of HIF activation in cancer, our lab has recently 

shown that PDK activity is directly responsible for increasing cancerous phenotypes 

(McFate and others 2008). PDK acts to shut down PDC activity the same way BDK 

acts to shut down BCKDC. Given that PDK activity can be manipulated to alter 

cancer phenotypes, we hypothesized that altering BDK activity would also alter 

cancer phenotypes. 

 In this publication, we show that utilizing stably transfected shRNA 

knockdown system of BDK in cancer cells, the phenotypes of the cells are altered. 

However, these data also suggest that by altering the BCKDC system, metabolic 

compensation occurs to the point where PDC activity is affected. These data 

indicate that the dehydrogenases PDC and BCKDC may not act independently of 

one another. 
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All chemicals were purchased from Sigma-Aldrich unless otherwise stated. Cell 

culture products were purchased from GIBCO. 

Cell culture and Chemical Treatments 

Cells were cultured in Dulbeco’s Modified Eagle Media (DMEM, Invitrogen) 

supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin, and 1.5 

mg/mL G418 (Gibco). G418 was used to select transgenically altered cells. Cells 

were cultured under 37ºC incubation and in 21% O2, 5%CO2, and 74% N2. Chemical 

treatments were performed in Kreb’s Saline Buffer and incubation times are as 

indicated. Each chemical treatment was performed by dilution from 100X stock in 

Kreb’s saline buffer. For cell hypoxia treatment, the culture dishes were sealed in a 

modular incubator chamber, flushed with gas containing 1% O2, 5%CO2, and 94% 

N2 for 5 min, and incubated in this environment at 37ºC for the indicated times. 

Generation of Transgenic C6 Glioma Cell Lines for BDK Knockdown 

An shRNA knockdown vector for transfection into C6 glioma cells specific to BDK 

was obtained from SuperArray. The cells with shRNA BDK are referred to as shK 

(shRNA BCKD-Kinase) from hereafter. The SuperArray kit provided a standard 

control vector consisting of a scrambled DNA sequence cloned into the identical 

vector for quality and specificity of effects that we also used and is referred to as 

CVC6 (control vector for C6 cells) hereafter. CVC6 and shK cells were treated 

identically through the transfection procedures. The cells were transfected as 

described in the product manual. Briefly, vectors were grown in E.coli JM109 

(Stratagene). DNA was purified by a commercial miniprep kit (Qiagen). DNA was 
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then transfected into C6 cells with Lipofectamine 2000 reagent (Invitrogen) and 

incubated in fresh DMEM with 10% FBS following transfection. After 48 hrs recovery 

time, transfected cells were selected by adding 1.5 mg/mL G418 (Gibco) in complete 

DMEM. Media was changed as cells died and colonies were allowed to grow until 

large enough to pluck and grow independently. Once cells were grown and verified 

through Western blotting of BDK, they were used as stable cell stocks to ensure 

clonal cell lines. shK and CVC6 cell lines were incubated as previously described for 

wild type in the “Cell Culture and Chemical Treatments” section. 

Cell counting 

Cell were washed and trysinized for cell counting procedures for ELISA 

normalization. Trypsin was inactivated by adding equal amounts of media with 10% 

FBS. Five hundred μL of suspensions of each preparation were then placed in a Vi-

Cell Trypan Blue automated counter for cell counting. 

Western Blot and Densitometry Analyses 

Cells were washed three times with cold PBS. Appropriate amount of lysis buffer 

containing RIPA buffer (Bioworld), 1% SDS, and 1X protease inhibitor cocktail 

(Roche) then scraped. Cell remnants were then collected in 1.5 ml microcentrifuge 

tubes. The cell material was sonicated for 25 seconds at 50 Hz, then placed in rack 

at room temperature. Cell lysates were then spun for 5 minutes at 12,000 g and the 

supernatants were transferred to fresh tubes. Protein levels were determined by the 

BCA method of analysis (Pierce). Proteins were separated on 4-12% Bis-Tris SDS-

polyacrylamide gradient gels (Invitrogen) and transferred to nitrocellulose 

membranes (Invitrogen). Membranes were blocked using 5% goat or horse serum 
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(Vecotr Labs) in Tris buffered saline with 0.1% Tween-20. Antibodies used were 

anti-phospho-Ser292-E1α BCKDH (generous gift from C. Lynch, 1:20,000), anti-E1α 

BCKDH (generous gift from C. Lynch, 1:1000), anti-BDK 1:2000 (generous gift from 

Dr. R. Harris), E1β/E2 antisera 1:2000 (generous gift from Dr. R. Harris), anti-

phospho-Ser293-E1α PDC 1:5000 (Novus), anti-E1α PDC 1:2000 (Novus) and anti-

β actin 1:10,000 (AbCam). Protein bands were visualized by enhanced 

chemiluminescence (Pierce) using either Kodak film and developer or CCD 

luminescence camera (Fuji Film). Signals were quantified using densitometry in 

ImageJ (Wayne Rasband, NIH). Phosphoproteins were normalized to total protein 

amounts unless otherwise stated. Graphs indicate arbitrary units on the y-axes 

derived from signals normalized to non-treated or wild type controls by direct 

comparative ratios. These normalizations were necessary to control for protein 

loading. 

Proliferation assays 

One hundred thousand cells were plated in 6-well culture dishes to a volume of 2 mL 

of DMEM media solution with 10% FBS and 1% penicillin-streptomycin. At time 

points, cells were counted as described in the “Cell Counting” procedure. The data 

are presented as either raw cell numbers or relative proliferation rates normalized to 

wild type controls. 

Migration and Invasion Assays 

Migration experiments were performed using BD Falcon cell culture inserts with 8 

micron pores (BD Biosciences). Cell invasion experiments were performed using 24-

well Biocoat Matrigel™ invasion chambers with an 8-µm pore polycarbonate filter 
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according to the manufacturer's instructions (BD Biosciences) Fifty thousand cells 

were plated in migration and invasion inserts to a volume of 0.5 mL of DMEM 

solution. The inserts were then placed in 24-well culture dishes containing 0.75 mL 

DMEM solution with 1% FBS and 1% penicillin-streptomycin. Cells were incubated 

at 37 degrees Celsius, 1% O2, 5.0% CO2 and 94% N2 for 72 hr. Cells that remained 

inside the insert after 48 hours were thoroughly wiped with a cotton swab and 

invading cells were fixed and stained using Diff-Quick Stain Solution (Dade Begring). 

Images were then taken with a Canon CoolSNAP digital camera in Metamorph 

imaging program under light microscopy. Cell number was determined by marking 

individual cells with spots in the nucleus in ImageJ imaging software and using the 

quantifier for spot counting. Five images were taken, counted and averaged from 

each well insert to ensure adequate sampling.  

Colony Formation Assay 

Ten thousand cells from each cell line were placed in 1 ml of DMEM with 0.3% low-

melting agarose (soft agar) and 10% FBS, and overlaid onto 1 ml/well of DMEM with 

0.5% agarose and 10% FBS. Cells were then incubated for 18 days at 37 C in 5.0% 

CO2. At the endpoint, wells were placed under light microscope with COOLSnap 

Kodak camera. Five images were taken, counted and averaged from each well 

insert to ensure adequate sampling. Colonies were counted by identification with 

exclusion parameters at ~10 nm. Colony diameters were determined by importing tiff 

images in ImageJ software. A line was then drawn from end to end of colony going 

through the center and ImageJ quantified diameter. 

CMA Analysis of Lactate 
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Cells cultured and samples of media were taken at indicated times and frozen at -

80ºC. Cell numbers were then obtained as described previously in the "Cell 

Counting" section. Media samples were thawed, vortexed and centrifuged to 

eliminate air bubbles. 50 μL of media samples were used to measure metabolite 

levels. Lactate was measured using a CMA 600/microdialysis analyzer (CMA 

Microdialysis AB). Resulting data were normalized to cell number for each sample. 

BCKDC Activity Assay by Radiolabeled CO2 Capture 

The following analysis was performed by collaborators (Jeoung and others 2006). 

Briefly, cells were plated in culture flasks (1 x 10^6 cell/flask for wild type cells, 0.75 

x 10^6 cell/flask for CVC6 and shk cells because growth rates were different.)  Cells 

were cultured until growth reached 90% confluency. Cells were then washed twice 

with PBS (room temperature). Five mL of Krebs-Henseleit buffer containing 5 mM 

glucose, 1 mM 14C-valine (specific activity; 150 uCi/mmol), 0.2 % BSA, and 1 mU/mL 

insulin. The air was flushed with 95% O2 and 5% N2, then the bottle was closed with 

a rubber stopper. Experimental incubation time was 1 hr at 37ºC. Three-hundred μL 

of 60% perchloric acid was added to stop the reaction process. 14CO2 was collected 

into the center well. In order to check for KIV production from valine, 1 mL of 

stopped solution was taken out and put into a scintillation vial. The rubber stopper 

was then replaced and 350 μL of 30% H2O2 was added and incubated for 30 min. 

Radioactivity in the center well was then counted. Data are expressed as nmol of 

oxidized valine determined to be in equimolar proportions with captured 14CO2 and 

normalized to cell number. 

ATP bioluminescence assay 
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Cells were grown under culture conditions. Cells were detached from the culture 

plates with trypsin and suspended in media for counting. Media volumes were 

adjusted to a range of 105 to 108 cells/mL. Boiling 100 mM Tris, 4 mM EDTA, pH 

7.75 was added (9:1 ratio to sample volume) and incubated for 2 min at 100ºC. 

Samples were then centrifuged at 1000g for 60 sec. The supernatants were 

transferred to clean tubes. Luciferase reagent was then added to the samples and 

bioluminescence was recorded after 10, 15, and 20 seconds. The highest values 

were taken and normalized to viable cell number established from left over cell 

suspensions for each sample. 

Statistical Analyses 

Statistical analyses ANOVA, Tukey’s HSD and Fisher’s PLSD post hoc tests were 

performed using STATview statistical software. Where it was necessary to compare 

treatment only to control groups, ANOVA and Dunnett’s post hoc analyses were 

performed in SPSS statistical software. 

Results 

A specific BDK knockdown using stably transfected shRNA in C6 glioma cells 

proves viable in reducing BCKDC phosphorylation and activity 

 C6 glioma cells have a high basal level of BCKDC phosphorylation. It is 

unclear what role the metabolism of BCAAs and BCKAs has in cancer biochemistry. 

Previous reports are perfunctory and contradictory occurring mostly in tumor-bearing 

animals, but also in humans, leaving the question open to further and more specific 

investigation.  We chose to manipulate an in vitro system of cancer to identify any 

key differences observed when the BCKDC activity state was constitutively active. 
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These C6 cells were used to generate stable-shRNA BDK knockdown cells (shK) 

and stable-control vector (CVC6) cell lines. The shK and CVC6 cells generated were 

analyzed via Western blot for BDK and phosphorylated Ser292-BCKDC E1α to 

verify that there had reduced and comparable signals, respectively, as compared to 

C6 wild type (Fig. 1A). Densitometry of Fig. 1A Western blots are also shown in Fig. 

1B. The shK cell line had a decreased BDK signal compared with both wild type 

(p<0.0001) and CVC6 (p<0.0001). There were no differences between wild type and 

CVC6 cell lines in BDK signal. Phosphorylated Ser292-BCKDC E1α levels for shK 

cells were non-detectable, whereas wild type and CVC6 cell lines had comparable 

signals. For normalization of phosphorylated signals of proteins, the phosphorylated 

signal is divided by the total protein signal and expressed as a ratio. The shK cells 

had a decreased ratio of phosphorylated Ser292-BCKDC E1α from wild type 

(p<0.0001) and CVC6 (p<0.0001), whereas no differences were detected between 

wild type and CVC6 cells. The activity of the E1α-BCKDC was generously performed 

by Nam Ho Jeung, a collaborator, and shows shK cells have an increased activity of 

the E1α subunit as compared to wild type and CVC6 (p<0.05 for both comparisons; 

Fig. 1B).  

E1β and E2 Subunits of BCKDC in the Different Cell Lines 

 BCKDC subunits E1β and E2 were analyzed by Western blot and 

densitometry (Fig. 2A and B, respectively) to see if any disruption to normal levels of 

these proteins resulted from the transgenic alterations to BDK translation. The E1β 

subunit is the heterodimeric partner to the E1α that composes the E1 subunit. There 

were no statistical differences of E1β signal between shK cells when compared to 
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either the wild type or CVC6. No differences were observed between wild type and 

CVC6. However, the signals from the blot of the E2 subunits of each cell line 

showed increased signals for shK cells compared with wild type (p<0.05). No 

differences were present between either the shK and CVC6 cell lines, or the wild 

type and CVC6 cell lines. 

BDK Knockdown Cell Line Shows Increased Proliferation from Controls 

 Cell proliferation was compared for the cell lines over 72 hrs, the data from 

which are depicted in Fig. 3A. The number of viable shK cells was significantly 

increased compared with wild type for 24 (p<0.001), 48 (p<0.0001) and 72 hrs 

(p<0.0001). The number of viable shK cells was also significantly increased 

compared with CVC6 for 24 (p<0.001), 48 (p<0.0001) and 72 hrs (p<0.0001). The 

average proliferation rate of shK cells across 24, 48 and 72 hr time points was 

137.63% of wild type and 136.82% of CVC6 cells. There were no differences 

between wild type and CVC6 cells for any time points. To investigate if the increased 

proliferation was due to growth factor signaling, we replicated the proliferation assay 

in serum-free media (Fig. 3B). The results show increased shK cell proliferation with 

respect to wild type at 48 (p<0.05) and 72 hrs (p<0.05), but not at 24 hrs. The 

number of shK cells was also significantly increased from CVC6 at 48 (p<0.01) and 

72 hrs (0.05), but not 24 hrs. The average proliferation rate of shK cells across 24, 

48, and 72 hr time points was 119.65% of wild type and 122.08% of CVC6 cells. 

There were no differences between wild type and CVC6 cells for any time points. 

Metastatic Behaviors Increase in BDK Knockdown Cells Relative to Controls 
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 To investigate if the increased rates of proliferation observed in the BDK 

knockdown cells were indicative of other malignant phenotypes, we measured the 

migration of cells through perforated culture inserts. This tests the mobility of cancer 

cells commonly seen in in vivo systems. We observed increased migratory rates for 

shK cells as compared to wild type (p<0.0001) and CVC6 (p<0.0001) cells, as 

shown in Fig. 4A and quantified in 4D.  

 Cell invasiveness, another metastatic phenotype commonly found in 

malignant cancerous tissue, was also analyzed. Invasion assays differed from 

migration only in that the cells were cultures in perforated culture inserts filled with 

extracellular matrix matrigel to mimic the extracellular environment. The results show 

increased invasiveness for shK cells as compared to wild type (p<0.0001) and CVC6 

(p<0.0001) cells, as shown in Fig. 4B and quantified in 4E.  

 Cell lines were mixed with a soft agar DMEM solution and plated in 6 well 

dishes. Incubation of cells consisted of 3 weeks under culture conditions. Upon 

termination of the experiment, images were taken of cell colonies and analyzed as 

described in the Experimental Methods section. There were no differences in colony 

numbers between the three cell lines (data not shown). However, the size of the shK 

cell colonies was significantly increased with respect to wild type (p<0.0001) and 

CVC6 (p<0.0001) colonies, as shown in Fig. 4C and quantified in 4F.  

Phosphorylated Characteristics of PDC, a Family member of the Heterodimeric 

Multimer Complex also Implicated in Metastatic Cancers 

 We next wondered if other mitochondrial dehydrogenases were affected by 

the BDK knockdown. Biochemical pathways in metabolism are tightly regulated 
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according to energy demands of the cell; alterations to one pathway may affect the 

another. Our lab had previously investigated PDC activity and its relation to 

cancerous phenotypes, classically termed “the Warburg Effect” (McFate and others 

2008). The more aggressive cancerous phenotypes presented here were 

unexpected, leading us to investigate PDC metabolic activity. Cells were harvested 

and analyzed through Western blotting for E1α PDC phosphorylation state. The 

phosphorylation state of Ser 293-E1α PDC is shown with the total PDC E1α signal 

beneath as loading controls (Fig. 5A). Densitometry of Western blots in Fig. 5A is 

represented in Fig. 5B. The PDC E1α phosphorylation ratios are increased for the 

shK cell line when compared to both wild type (p<0.05) and CVC6 (p<0.05) cell 

lines.  

Lactate Production as an Indicator of Warburg Characteristics 

 If the Warburg hypothesis is correct, then the BDK knockdown cells, which 

exhibit a more aggressive metastatic phenotype, should release more lactate into 

the culture medium. To test this, media samples were taken at 6, 12, 24, and 48 hrs 

for lactate analysis using CMA. Cell number was then determined as previously 

described. CMA analysis of the cultured media showed differences in lactate 

produced for the cell lines (Fig. 5C). The shK cells had increased lactate production 

with respect to wild type cells at 12 (p<0.01), 24 (p<0.05) and 48 hours (p<0.05). 

The shK cells also had increased lactate production with respect to CVC6 cells at 12 

(p<0.01), 24 (p=0.01) and 48 hours (p<0.05). 
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 BCAA metabolism has been underappreciated in cancer biochemistry. Here 

we propose that shunting BCAA metabolism through the BCKDC affects overall 

cellular biochemistry in cancer cells. Using stably transfected shRNA, we 

successfully knocked down the translation of the BDK (shK cells), the kinase 

responsible for inactivation of the BCKDC, thus leaving the complex in a 

constitutively active state. Both phenotypical and biochemical changes were 

observed in the transgenically altered cancer cells. We found that shK cells were 

more proliferative, migratory, invasive, and able to form colonies in soft agar, an in 

vitro technique which shows cellular ability to form cancerous nodules. We also 

found that increased BCKDC activity in shK cells resulted in decreased activation of 

the PDC, another key mitochondrial metabolic multi-enzyme complex, and 

consequential increased lactate secretion from these cells. These data suggest that 

enhancing BCAA and BCKA metabolism through the BCKDC acts to modify cellular 

biochemistry so that PDC activity is decreased, which results in increased lactate 

production and increased invasive cancer phenotypes, historically dubbed the 

“Warburg Effect”. 

 Cancerous cells are in a constant state of hypermetabolism and accelerated 

growth. As such, their metabolic needs greatly differ from normal cells. Changes to 

their intracellular biochemistry cause appreciable differences to their behaviors and 

extracellular signaling. When cellular processes become dysregulated, like in 

cancer, the cell then has an altered transcriptional milieu from its genes in response. 
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These changes are largely indicative of evolutionarily preserved survival and 

adaptation mechanisms.  

Recently, our lab has shown that increased levels of BCAAs and BCKAs can 

stimulate signaling mechanisms involving HIF, an evolutionarily conserved 

transcription factor which is normally activated by hypoxic stress conditions 

(manuscript in submission). Activation of the HIF pathway has been shown in cancer 

cells, where the level of increase above baseline corresponded to the degree to 

which invasive and metastatic characteristics were increased. These increased 

cancerous phenotypes have been shown to involve specific factors including VEGF, 

GLUT1, etc (reviewed in (Ke and Costa 2006)). However, increased activation of 

HIF has also been shown to be directly stimulated by increased levels of glycolytic 

metabolites, particularly pyruvate, OAA, succinate, and fumarate (Isaacs and others 

2005; Lu and others 2005; Selak and others 2005). HIF activation has been shown 

to increase glycolysis and decrease mitochondrial respiration, primarily through 

increased PDK expression, which leads to decreased PDC activity, a buildup of 

pyruvate, and, consequently, an increase in lactate production (Koukourakis and 

others 2005).  

Our lab has recently published data increasing the activity of PDC, the 

metabolic regulator of aerobic metabolism at the crux between glycolysis and 

cellular respiration, by PDK knockdown. These data showed increasing PDC activity 

through knockdown of PDK, HIF levels decreased, as did cancerous phenotypes of 

invasion, migration, and tumor size (McFate and others 2008).  
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Our data show a decrease in presence and activity of BDK results in 

increased malignancy. These findings are contrary to our original hypothesis. 

However, perhaps a more comprehensive understanding has been reached in that 

the regulation of just one metabolic pathway is not always sufficient, as was shown 

by McFate et al (2008) and others (McFate and others 2008). Biochemistry of 

cancerous, as well as normal, cells requires a coordination of metabolic complexes. 

Our intent was to investigate whether altered BCKDC activity was capable of 

singularly altering the behavior of cancerous cells and cancer biochemistry in a way 

that would make it a new target for cancer therapy research, similar to PDC. 

However, it seems that there is no direct translation of metabolic complex to 

therapeutic target.  

In summary, BCAAs are metabolized through one multienzyme complex, 

BCKDC. In this report, we used an shRNA knockdown approach of BDK to cause 

hyperactivity of BCKDC. Our hypothesis was that by increasing BCKDC activity, the 

free amino acid pools would be depleted in cancer cells, which would limit their 

growth rates. The data show a successful knockdown of BDK to result in increased 

activation of BCKDC. However, the behavior of these cells increased in cancerous 

characteristics, such as proliferation, migration, invasion, and colony size. We further 

investigated whether these results were due to a coordination of metabolic 

complexes, namely BCDKC and PDC. These data show that alterations to BCKDC 

activity does indeed have an effect on PDC activity. The nature of this effect is one 

that drives PDC to become less active, a characteristic shown by our lab and others 

as causing increased cancerous behaviors. It seems that BCAA control is not solely 
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responsible for cancer behaviors, but these unexpected findings do, however, 

warrant a closer look at BCAAs in cancer biochemistry. 
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Figure 1. Viability and functionality of BCKDC-kinase knockdown in vitro 

system.  

A, Western blot analysis showing sufficient knockdown of BDK corresponding to 

inhibition of phosphorylation and increased activity of BCKDC. C6 wild type (w/t), 

shK C6 and CVC6 cell lines are shown for the BCKDC-kinase, phospho-Ser292-E1α 

BCKDC and total-E1α BCKDC (n=6). Densitometric analyses of Western blots are 

depicted in densitometry units with standard errors normalized to wild type control. 

B, shows sufficient increased BCKDC activity resulting from decreased 

phosphorylation from BDK knockdown. Statistical differences were determined by 

Tukey’s HSD post hoc analysis (*p<0.05, **p<0.001, and ***p<0.0001 with respect to 

C6 wild type; +p<0.05, ++p<0.001, and +++p<0.0001 with respect to CVC6; ND – 

non-detectable signal).  

 

Figure 2. Analysis of BCKDC additional subunits  

A, Representative Western blot analysis of additional BCKDC subunits, E1β and E2, 

for C6 wild type (w/t), shK and CVC6 cells (n=6). B. Densitometric analyses of 

Western blots are depicted in densitometry units with standard errors normalized to 

wild type control. Statistical differences were determined by Tukey’s HSD post hoc 

analysis (*p<0.05 with respect to C6 wild type). 

 

Figure 3. Cell proliferation in serum and serum-free media show differences 

between shK cells and wild type and CVC6 control cells.  
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A, indicates cell proliferation is increased in shK cells with and without serum growth 

factors. Cell proliferation is shown in millions of cells for 24, 48, and 72 hr time points 

for viable cells only (n=6 for each time point). B. Cell proliferation in serum-free 

media is shown in millions of cells for 24, 48, and 72 hr time points for viable cells 

only (n=6 for each time point). Statistical differences were determined by Tukey’s 

HSD post hoc analysis (*p<0.05 and ***p<0.0001 with respect to C6 wild type; 

+p<0.05, ++p<0.01, and +++p<0.0001 with respect to CVC6). 
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Figure 4. Metastatic phenotype analyses indicate differences between shK 

cells and wild type and CVC6 control cells.  

A, shows increased migration for shK cells. Migrating C6 wild type(w/t), shK C6, and 

CVC6 cells were fixed and stained following 48 hour incubation (n=6). 

Representative images indicating qualitative differences are shown in A and 

quantitative cell counting is displayed in D with standard errors. B, shows increased 

invasion for shK cells. Invading C6 wild type(w/t), shK C6, and CVC6 cells were 

fixed and stained following 48 hour incubation (n=6). Representative images 

indicating qualitative differences are shown in B and quantitative cell counting is 

displayed in E with standard errors. C, shows increased colony diameter for shK 

cells indicating higher proliferation and invasion characteristics. Pictures of C6 wild 

type(w/t), shK C6, and CVC6 were taken following 3-week incubation in soft agar 

and analyzed for colony diameter. Representative images indicating qualitative 

differences are shown in C and quantitative colony diameter size is shown in F with 

standard errors. Statistical differences were determined Tukey’s HSD post hoc 
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analyses (***p<0.0001 with respect to C6 wild type; +++p<0.0001 with respect to 

CVC6). 

 

Figure 5. Differential phosphorylation status of the mitochondrial metabolic 

complex PDC for shK and wild type and CVC6 controls  

A, representative Western blot analysis shows phosphorylation status of Ser293-

E1α PDC for C6 wild type (w/t), shK C6 and CVC6 cells (n=6). B, indicates 

increased PDC phosphorylation ratios for shK cells. Densitometric analyses of 

Western blots are shown in densitometry units with standard errors normalized to 

wild type control. C, shows increased lactate levels for shK cells, which indicates an 

increased Warburg phenotype. Lactate production was measured from media by a 

CMA microdialysis analyzer at 6, 12, 24, and 48 hours (n=6 for each time point) 

normalized to cell number. Statistical differences were determined by Tukey’s HSD 

post hoc analysis (*p<0.05 with respect to C6 wild type; +p<0.05 with respect to 

CVC6). 

 

Table 1. Free ATP levels in C6 wild type, shK, and CVC6 cells  

No significant difference between ATP levels was found. Data were gathered for 

shK, C6, and CVC6 cells by a luciferase bioluminescence assay. Data are displayed 

as nM ATP normalized by millions of viable cells (±SEM). Statistical analysis showed 

no significant difference between any of the cell lines (Tukey’s HSD post hoc 

analysis, n=6). 
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Figures 1763 
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Figure 4. Viability and functionality of BCKDC-kinase knockdown in vitro 
system 
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Figure 5. Analysis of BCKDC additional subunits 1767 
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Figure 6. Cell proliferation in serum and serum-free media show differences 
between shK cells and wild type and CVC6 control cells 
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Figure 7. Metastatic phenotype analyses indicate differences between shK 
cells and wild type and CVC6 control cells 
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Figure 8. Differential phosphorylation status of the mitochondrial metabolic 
complex PDC for shK and wild type and CVC6 controls 
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 Table 1. Free ATP levels in C6 wild 
type, shK, and CVC6 cells 

Cell Type nM ATP/million cells 
(means ± SEM) 

C6 wild type 150 ± 23.4 
shK C6 149 ± 2.5 
CV C6 142 ± 7.3 
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General Discussion 1787 
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The focus of this thesis is the role of BCAAs in cancer signaling and 

biochemistry. These data demonstrate a putative, novel signaling pathway involving 

HIF-1α and that BCAA catabolism is not an independent regulator of in vitro cancer 

phenotypes. It has been known that the metabolism of cancer cells is aberrant in 

that they preferentially consume glucose anaerobically, even in the presence of 

oxygen levels sufficient for mitochondrial respiration. Recent findings from our lab 

have shown that manipulating PDC activity to be constitutively active (forcing 

aerobic respiration to occur) can reduce cancerous tumor formation and migration in 

a xenograph animal model. This work attempted to elaborate on the interest of 

another biochemical pathway, that of the BCAAs, in cancer biology. We set out to 

answer two research questions: 

1. Does α-ketoisocaproic acid, a substrate of the BCKDC and 

deaminated product of leucine, act to decrease HIF degradation cycle 

activity thereby promoting neoplastic activity in an in vitro model of 

CNS cancer? 

2. Do cells genetically modified by small hairpin RNA for the BCKDC 

kinase increase BCKDC activity and indicate a reciprocal relationship 

between BCKDC activity and cellular aggressiveness (eg, proliferation, 

migration, invasion, colony formation) in an in vitro model of CNS 

cancer, as similarly seen for PDC? 

Chapter 1 focuses on the first question regarding BCKAs in HIF biology. It 

was first discovered in our lab that the BCKAs had a positive affect on HIF-1α levels 
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in an in vitro system (Lu and others 2005). This work attempted to elaborate and 

further demonstrate that BCKAs can alter HIF regulation. Not only is HIF one of the 

most studied molecules in cancer biology, but, also, data have been shown that 

circulating BCAA levels are increased in patients with cancer.  Increased circulating 

BCAA levels implies increased circulating BCKA levels, which, when taken together 

with our hypothesis for BCKA interference in HIF regulation, would have new 

implications in cancer biology.  

Chapter 1, figure 1 shows dose-dependent curves for HIF-1α protein and 

VEGF secretion in contrast to BCKDC phosphorylation status. It is clear from these 

data that BCKAs are able to affect HIF-1α levels and VEGF secretion at relatively 

low levels, which fall in the range of BCAA levels found circulating in patients with 

cancer. Chapter 1, figure 2 shows BCKAs can inhibit the HPH cycle by sustaining 

HIF-1α (endogenous HPH target) and ODD-GFP (exogenous reporter molecule of 

HPH cycle activity) levels. This figure also indicates that BCKA-induced HIF-1α level 

stabilization is reversible. The mTOR molecule has been shown to be activated by 

leucine (Kimball and Jefferson 2004) and also to increase HIF-1α levels (Hudson 

and others 2002). Chapter 1, figure 2 also shows increased HIF-1α levels are not 

the result of mTOR activity.  

Our research focused on the metabolism of BCAAs and BCKAs in two 

situations of potential clinical importance. The first involved the aberrant metabolism 

of BCKAs in maple syrup urine disease (MSUD), which leads us to propose 

ascorbate as a possible benign therapeutic intervention for treating MSUD-induced 

edema. Future work in this area could potentially extend these in vitro findings to a 
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physiological model of MSUD. The literature is still sparse with regards to 

mechanisms leading to the edematous phenotypes seen in MSUD patients in acute 

crisis. If the putative BCKA-HIF-VEGF pathway presented here is validated (either 

through in vitro models of MSUD or transgenic animals with inactive BCKDC), it may 

be beneficial to begin testing in MSUD patients. Ascorbate has long been known to 

either passively diffuse (Lam and Daniel 1986) or be transported via a specific Na-

dependent transporter in the choroid plexus. Ascorbate levels have been shown to 

be 500 μM in CSF (Stamford and others 1984), concentrated in the ventricular 

system (Spector and Lorenzo 1973). These levels are five-fold higher than 

necessary for activity in vitro (Knowles and others 2003). 

The second project examined the effects of manipulation to BCAA 

metabolism on the resultant malignant phenotypes in cancer cell lines. While our 

initial aim was to identify BCKDC activation as a potential therapeutic mechanism, 

the research suggests that, at worst, the metabolic pathways of BCAAs are too 

intertwined with others to be clearly effective. In the best of circumstances, perhaps 

a line of research initiated by Doering and colleagues where BDK overexpression is 

used in an in vitro setting could indicate if artificially inactive BCKDC could lead to 

decreased malignant phenotypes, the inverse of what we have shown here.  

The major finding shown in Chapter 2 was that a reduction of BDK activity, 

and thus and increase in BCKDC activity, increased in vitro aggressive and 

metastatic characteristics in C6 cells. This finding is surprising and the opposite of 

what was expected according to our rationale proposed where local depletion of 
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essential amino acids would cause protein translation and de novo synthesis rates to 

decrease.  

Here we show short hairpin RNA interference successfully knocked down the 

translation of BDK. This kinase has been shown to phosphorylate Ser292 of the 

BCKDC E1α subunit, causing deactivation (Harris and others 1997; Popov and 

others 1992; Shimomura and others 1990). This would allow the phosphatase to act 

unopposed, resulting in increased activation of BCKDC (Harris and others 2004). 

Through collaboration, the hypothesized increase in activation was verified through a 

BCKDC E1α subunit activity assay. However, the increased activity was not to the 

proportions one would expect from the Western blots. Perhaps there is another 

kinase which phosphorylates a residue other than Ser292, leading to a decrease in 

BCKDC activity which would not be apparent in the Western blots. This seems 

unlikely due to the fact that various groups have consistently reported the isolation of 

one, and only one, kinase specific for BCKDC [reviewed in (Harris and others 2004; 

Harris and others 2005)]. There is another site phosphorylated by BDK (Ser302), 

although this has been shown to be a modification inconsequential to the activity of 

BCKDC (Cook and others 1984; Cook and others 1983; Li and others 2007). A more 

likely explanation is that, over time, the transfected cells have either rejected the 

plasmid, or the plasmid has mutated since the activity assays were the last 

chronological experiments performed. Both of these situations would result in the 

observed discrepancy, however, the latter is more likely due to the fact that the shK 

cells retained resistance to G418, the selection agent. A large body of evidence has 

shown tumor phenotypes such as proliferation, migration, invasion, and colony 
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formation are indicators of metastatic and aggressive cancers (Gao and others 

2005; Ke and Costa 2006; Le Jeune and others 2006; Lin and others 2007; Martens 

and others 2006; Mohyeldin and others 2005; Mueller and others 1999; Zhang and 

others 2000). We performed experiments to analyze these characteristics to 

discover the effects of BDK knockdown on in vitro cancer phenotypes. Our 

hypothesis was that a reduction in BDK would increase BCKDC activity. 

Consequently this would act 

to deplete free BCAA from 

the pools necessary for 

other pathways, such as 

translational activation and 

anabolism for building new 

proteins de novo. The 

results of experiments 

testing these four metastatic 

phenotypes of our in vitro, 

transgenic GBM model 

showed increased 

metastatic phenotypes, the 

opposite of what was 

expected. A summary of our 

expected and actual results is shown in Fig 9. Interestingly, Nakai et al. showed a 

decrease in proliferation rates in C2C12 cells using transient transfection of small 

Figure 9. Hypothesis and results summary for 
BDK knockdown experiments.  

Diagram indicates our experimental objective to generate a 
BDK knockdown with our hypothesized results (left arm) and 
our experimental results (right arm). In the right arm, results 
obtained in accordance with our original hypothesis are 
encased in green lines; results counter to our original 
hypothesis are encased in red lines.
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inhibitory RNA to knockdown BDK. There are distinct differences in the Nakai et al, 

methods and those used in the present work. For instance, their use of transient 

transfection may have resulted in a smaller population of cells contain the 

knockdown plasmid. This would provide results that are representative of a mixed 

population of BDK expressing cells (Nakai and others 2006). The authors also 

indicated that cells were used for assays at 50% confluency. It is unclear from the 

methods whether they began the proliferation assays at such high confluency, but 

was probably necessary to achieve maximal transfection efficiency. Our proliferation 

assays began at closer to 25% confluency, allowing for more growth space and less 

inhibitory autoregulation of cellular growth. Also, differences in C2C12 and C6 cell 

phenotypes have not been defined, which may add to complications in the 

seemingly conflicting data. C2C12 are myogenic cells, whereas C6 are astrocyte-

derived glioma cells. It is unclear what differences there are, if any, in the protein to 

lipid ratios in these cell types, which may yield variant results due to the unique 

aspects of BCAA metabolism discussed throughout this work. In addition, Nakai et al 

showed increased insulin secretion was sustained in the BDK siRNA-treated cells. 

Insulin has long been known to increase cellular viability and proliferation. Recent 

reports (Akhtar and others 2009; Kai and others 2009; Probst and others 2008) have 

shown that inhibiting the activity of insulin and insulin-like growth factors lead to 

decreased proliferation of cancerous cells. Therefore it seems plausible that there 

are other unidentified mechanisms at work in the differences in cellular proliferation 

showed by Nakai et al and the present work. 
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Our second hypothesis was based on research performed in our laboratory 

where altering another mitochondrial dehydrogenase, PDC, reduced in vitro 

proliferation, invasion, migration, and colony formation (McFate and others 2008). 

Previous work had found that altering the phosphorylation status of Ser293-E1α 

PDC (site 1) had effects analogous to what was originally hypothesized in this study, 

i.e. increasing PDC activation by interfering with the expression of pyruvate 

dehydrogenase complex kinase (PDK) decreased the metastatic phenotypes (Kim 

and others 2007; Koukourakis and others 2005; McFate and others 2008; Roche 

and Hiromasa 2007). The original research concerning PDC and cancer is related to 

the “Warburg Effect”, established in 1960 (Warburg 1930; Warburg 1956), and the 

“Pasteur Effect”, established in 1857 (Pasteur 1857; Pasteur 1859) [reviewed in 

English (Racker 1974)]. Warburg found that cancerous cells preferred glycolytic 

metabolism over cellular respiration, even in the presence of oxygen. His theory fell 

out of favor for 60 years until recently it has been revisited by researchers exploring 

the possibility that the metabolic changes actually cause cancer. Pasteur had 

focused more on the production of lactic acid as a byproduct of glycolytic 

metabolism in bacteria. These data combined formed the basis of PDC-linked 

cancer theories reported in the literature.  

We investigated whether there was a change in the phosphorylation state of 

E1α PDC in shK cells, which could possibly explain the unforeseen increased 

metastatic phenotypes. We found a higher phosphorylation ratio of phosphorylated 

to total E1α PDC for shK cells with respect to both wild type and CVC6 control cells 

typical of increased metastatic tendencies (Koukourakis and others 2005; McFate 
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and others 2008; Roche and Hiromasa 2007). When we analyzed “the Warburg 

Effect” by lactate analysis, we found that lactate production was increased for the 

shK cells compared to both wild type and CVC6 cells. These data compliment our 

previous data showing that PDC has more phosphorylation in shK cells. With PDC 

activity reduced, the cells accumulate pyruvate by conversion to lactate. These data 

showed that shK cells had decreased BDK levels, which may have caused a 

permanent shift in metabolism from PDC to the BCKDC in those cells.  

New evidence has shown that “the Warburg Effect” may not be entirely about 

glucose metabolism. DeBerardinis et al, showed that SF188 glioma cells grown in 

culture consumed glutamine beyond levels required to accommodate nitrogen 

demand. In fact, the authors found glutamine metabolism primarily provided 

anaplerotic metabolites to the TCA cycle. The driving factors for this were the 

requirements of NADPH and TCA cycle intermediates used in fatty acid synthesis 

(DeBerardinis and others 2007). Since BCAA catabolism through BCKDC produces 

acetyl-CoA and other CoA derivatives, it is possible that fatty acid synthesis is also 

increased in the shK cells as a result of increased BCKDC activation through BDK 

knockdown. We focused, perhaps too narrowly, on the requirements of BCAAs for 

the de novo synthesis of proteins. However, dividing cells also require lipids to 

encase daughter cells after mitosis is complete. The relevant lipid/protein ratios are 

not clearly defined, however, it is known that mitochondrial inner membranes and pig 

epidermal cells have a protein to lipid ratio of 3:2, human red blood cell membranes 

and mouse liver ratios are 1:1, and myelin-producing cells have ratios closer to 1:5. 

These are just some examples of the variation of protein to lipid ratios found in 
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tissues. Joshi et al, report on BDK knockout mice that organ tissues have differential 

growth rates in these animals. Particularly, BDK knockout mice had decreased brain, 

muscle, and adipose tissue weights, similar heart weights, and increased liver and 

kidney weights when compared to wild type animals with respect to wild type. The 

authors posit the differential endogenous activity of BCKDC in these tissues for the 

inconsistent differences in tissue weight (Joshi and others 2007). For instance, the 

liver is known to have high endogenous BCKDC activity in wild-type mice. Therefore 

knocking out the BDK would not alter the metabolic pathways that may be more 

highly regulated in other tissues (eg, brain) so that the natural metabolic network is 

not shifted in the opposite direction, but rather in an accelerated manner.  

To indulge in further speculation, a recent report by Singh et al, studying 

Staphylococcus aureus where the investigators disrupted the transcription of 

BCKDC-akin genes in the bacterial genome led to decreased branched-chain fatty 

acid production. This alteration led to increased susceptibility to stresses and, 

therefore, decreased the viability of the cells (Singh and others 2008). This research 

agrees with another recent report showing inhibition of LAT1 transporters in 

eukarylotic cancer cells decreases cell proliferation and increases apoptosis through 

caspase 3 and 7 activities.  These data indicate that shutting down the availability of 

BCAAs to the metabolic milieu of the cell decreases the viability of the cell. We 

elected to investigate if the role of the BCKDC could affect proliferation rates in a 

similar vane. Our results are contrary to our hypothesis about decreasing the 

availability of BCAAs for anabolic pathways, but it does seem that limiting BCAA 

entry into the metabolic milieu upstream of the BCKDC-involved processes does 
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result in decreased proliferation. Perhaps further analyses on branched-chain fatty 

acid production, carbon skeleton tracking, and anabolic protein turnover would 

provide evidence to explain the unforeseen phenotypes seen in the shK cells and 

how alternate compensatory biochemical changes seem to have occurred. 

GBMs are difficult to treat, partially due to their location in the highly 

organized and compacted brain tissue. However, since these cells are 

hypermetabolic, it is possible that they may be preferentially susceptible to selective 

metabolic attack. The goal of this research was to investigate the potential of the 

BCKDC to be such a therapeutic target. Advances in targeted strategies for brain 

cancers have shown some interesting and promising results [reviewed in (Fine 2007; 

Lukas and others 2007)]. However, a major drawback of targeted therapies is their 

specificity for cancers with narrowly defined etiologies. Our strategy was an attempt 

to identify a more global target for cancer therapeutic agents. We hoped to find that 

BCKDC would be a potential target for further research and perhaps rational drug 

design for new, global cancer treatments. In light of the research supporting that 

cancer cachexia is the result of increased BCAA uptake in cancerous tissues, 

causing catabolic breakdown of skeletal muscle, we hypothesized that BCKDC 

would indeed lead to a novel therapeutic target. However, the data presented here 

indicate there is more to the story than BCAA shunting, but rather that this 

biochemical pathway may be regulated by other pathways that effect cancer cell 

phenotypes. 

It became apparent in the early stages of this research that the area of BCAA 

involvement in metabolic and signaling pathways pertinent to cancer biology lacked 
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a seminal work to bring a comprehensive direction and strategy to research in this 

field. The rationale for the hypotheses which lay the foundation for this thesis was 

composed of research investigations in exercise physiology, bacterial and 

mammalian biochemistry, cancer cell metabolism, cancer’s impact on muscular 

physiology and biochemistry, and genetic disorders of BCAA metabolism, to name a 

few. Recent reports discussed in this section do, however, begin examining the 

impact of BCAA metabolic changes in cancer cells. It is my opinion that this field of 

research has been building momentum and may be an important topic in cancer 

research in the near future.  
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